Сопоставительный анализ диаграмм показывает, что значимости функций, полученные разными методами, различаются. Удельные относительные затраты распределились по функциям следующим образом: z1 = 0,53; z2 = 5,05; z3 = 0,17; z4 = 3,57.
Сопоставительный анализ удельных относительных затрат показывает, что согласно первому методу первоочередной функцией для совершенствования является функция F4, а согласно второму методу — F2.
Рассмотрим традиционный и модифицированный методы исследования факторов снижения затрат по функциям, которые основан на том, что ожидаемая экономия за счет мероприятий ФСА определяется как уровнем исходных затрат, так и возможными факторами их снижения.
Относительно производственных систем машиностроительного профиля наиболее значимыми факторами экономии затрат являются:
• повышение технического уровня промышленной продукции;
• устранение функционально излишних конструктивных элементов в исходной конструкции;
• повышение обоснованности значений технических параметров на основе технических, технико-экономических и организационно-экономических расчетов;
• применение прогрессивных технологических процессов, заготовок и материалов;
• повышение коэффициента унификации;
• улучшение качества компоновки и технологичности сборки;
• повышение показателей надежности.
Каждый фактор вносит в общую экономию свой вклад, который приближенно оценивается соответствующим процентом снижения фактических затрат на функцию. Схематично в общем виде функциональные затраты и факторы их снижения для i-й функции приведены на рис. 2.18, где приняты следующие обозначения:
Указанные затраты рассчитываются по известным формулам [1]. Для выявления факторов экономии в традиционном методе ФСА предполагается использовать экспертов, которые имеют знания об альтернативных исполнениях исследуемых функций.
Недостатком данного метода исследования факторов снижения затрат по функциям является то, что в нем отсутствует подход выбора наиболее эффективной альтернативы из множества возможных реализаций i-го фактора, учитывающий одновременно функциональную эффективность и стоимостные затраты. В связи с этим предлагается лучшие факторы и их альтернативы определять по критерию максимального соотношения уровня технической эффективности к уровню затрат на реализацию функции. Рассмотрим последовательность решения указанной задачи.
Прежде всего следует отметить, что критерий эффективности производственной системы в целом или отдельного ее элемента , является комплексным и включает показатели назначения, надежности, экономичности, патентоспособности и т.п. Поскольку все показатели имеют свои единицы измерения, то при комплексной оценке необходимо использовать безразмерные единицы. Критерий технической эффективности может быть представлен в виде иерархической структуры показателей качества, конкретизирующих обобщенный критерий. В связи с этим для оценки альтернатив факторов по снижению затрат функций целесообразно использовать метод анализа иерархий. После построения иерархической структуры и попарного сравнения альтернатив i-го фактора относительно критериев самого нижнего иерархического уровня осуществляется вычисление интегрального вектора приоритета WТ.Э. альтернатив по целевому критерию технической эффективности исследуемой системы в целом или отдельного ее элемента.
Далее определяются затраты альтернатив факторов по каждой функции. При этом возможны два способа расчета затрат. В соответствии с первым способом вычисляются относительные затраты исходя из стоимостей функций, выраженных в денежных единицах (случай, когда на функциональные элементы системы имеется калькуляция). В соответствии со вторым способом определяются приросты затрат путем попарного сравнения функций системы. Этот способ применяется в ситуациях, когда на элементы системы отсутствует калькуляция, например когда исследуется принципиально новая система.
При использовании второго способа прирост затрат определяется на основе самостоятельной иерархической структуры, для которой рассчитывается вектор приоритета
, ранжирующий альтернативы, принадлежащие i-му фактору, относительно вершины иерархической структуры. Вершина иерархии в данном случае определяет затраты на реализацию факторов. Далее берется соотношение соответствующих значений векторов , и строится искомый вектор:Наиболее значимой альтернативой фактора для улучшения функции по технико-экономическому критерию является та, которая имеет максимальное значение в векторе
/3i.Рассмотрим пример определения наиболее значимой альтернативы фактора для улучшения по технико-экономическому критерию функции "перемещать наземным способом от одного до двух человек в диапазоне скоростей от 5 до 200 км/ч", которая относится к легковым автомобилям.
Пусть для улучшения технико-экономических показателей указанной функции используется один фактор: повышение технического уровня базового автомобиля "Москвич" путем использования новых технических идей ведущих мировых автомобильных компаний. Альтернативами данного фактора являются следующие варианты компоновки автомобиля "Москвич": A1 — "Москвич" — Мерседес, А2 — "Москвич" — BMW, А3, — "Москвич" — Вольво, A4 — "Москвич" — Фиат, А5 — "Москвич" — Форд, A6 — "Москвич" — Рено.
Иерархическая структура для оценки технической эффективности альтернатив приведена на рис. 2.19. Установление относительной предпочтительности критериев и альтернатив осуществлялось попарным сравнением. Значения векторов приоритетов альтернатив, рассчитанные по всем критериям иерархии, приведены в табл. 2.8, а абсолютные затраты на реализацию альтернатив — в табл. 2.9.
Таблица 2.8
Значения векторов приоритетов альтернатив при оценке их по техническим критериям
Альтернатива | Критерий | ||||||||
K1 | K2 | K3 | K4 | K5 | K11 | K12 | K13 | K0 | |
A1 | 0,291 | 0,440 | 0,059 | 0,048 | 0,616 | 0,508 | 0,312 | 0,052 | 0,180 |
A2 | 0,196 | 0,202 | 0,261 | 0,265 | 0,228 | 0,133 | 0,138 | 0,318 | 0,231 |
A3 | 0,066 | 0,096 | 0,119 | 0,048 | 0,228 | 0,031 | 0,038 | 0,129 | 0,111 |
A4 | 0,154 | 0,097 | 0,038 | 0,110 | 0,027 | 0,097 | 0,312 | 0,052 | 0,085 |
A5 | 0,146 | 0,048 | 0,261 | 0,265 | 0,228 | 0,056 | 0,063 | 0,318 | 0,189 |
A6 | 0,147 | 0,117 | 0,261 | 0,265 | 0,228 | 0,174 | 0,138 | 0,129 | 0,204 |
Таблица 2.9
Абсолютные затраты на альтернативы
Альтернатива Аi | A1 | A2 | A3 | A4 | A5 | A6 |
Абсолютные затраты (тыс. руб) | 150 | 155 | 150 | 50 | 160 | 140 |
Относительные затраты Zi на i-ю альтернативу рассчитываются по формуле Zi = Сi /Собщ, где Сi — затраты на осуществление i-й альтернативы; Собщ — общие затраты на все альтернативы.
Векторы относительных затрат
по альтернативам и результирующий вектор, отражающий отношение значений векторов и , имеют следующий вид: