Смекни!
smekni.com

Анализ взаимосвязей производственных показателей предприятия (стр. 3 из 8)

Нужно выбрать:

1) факторный показатель является количественным признаком, а результативный показатель - качественный признак (например, стаж работы в фирме и квалификация работников (тарифный разряд));

2) основанием группировки является качественный показатель, а результативный показатель - количественный признак (например, тарифный разряд - величина заработной платы);

3) показатель-фактор и показатель-результат являются качественными признаками (например, квалификация работников и уровень их образования);

4) факторный и результативный показатели являются количественными признаками (например, стаж работы и уровень оплаты труда).

При сравнении функциональных и корреляционных зависимостей следует иметь в виду, что при наличии функциональной зависимости между признаками можно, зная величину факторного признака, точно определить величину результативного признака. При наличии же корреляционной зависимости устанавливается лишь тенденция изменения результативного признака при изменении величины факторного признака. В отличие от жесткости однозначно функциональной связи корреляционные связи характеризуются множеством причин и следствий и устанавливаются лишь их тенденции.

Необходимо отметить, что экономической теории принадлежит решающее слово в обосновании связей между теми или иными признаками. При этом теоретический анализ должен показать, какие факторы влияют на исследуемый признак или же влияние каких факторов должно быть проверено. Статистическое выражение связи между явлениями может показать, что изменения одного из сопоставляемых признаков сопровождаются изменениями другого. Следовательно, нужно искать объяснение этим изменениям в их содержательном анализе. С помощью статистических методов изучения зависимостей можно установить, как проявляется теоретически возможная связь в данных конкретных условиях. Статистика не только отвечает на вопрос о реальном существовании намеченной теоретическим анализом связи, но и дает количественную характеристику этой зависимости. Зная характер зависимости одного явления от других, можно объяснить причины и размер изменений в явлении, а также планировать необходимые мероприятия для дальнейшего его изменения.

Для того чтобы результаты корреляционного анализа нашли практическое применение и дали желаемый результат, должны выполняться определенные требования в отношении отбора объекта исследования и признаков-факторов. Одним из важнейших условий правильного применения методов корреляционного анализа является требование однородности тех единиц, которые подвергаются изучению методами корреляционного анализа. Например, при корреляционном анализе зависимостей тех или иных технико-экономических показателей работы предприятий от определенных факторов должны быть отобраны предприятия, выпускающие однотипную продукцию, имеющие одинаковый характер технологического процесса и тип используемого оборудования, для предприятий добывающей промышленности определенную роль играет и географическое размещение предприятий.

При выполнении указанных общих требований далее необходима количественная оценка однородности исследуемой совокупности по комплексу признаков. Одним из возможных вариантов такой оценки является расчет относительных показателен вариации. Традиционно широкое распространение для этих целей получил коэффициент вариации. Несколько реже применяется отношение размаха вариации к среднеквадратическому отклонению. Вывод о неоднородности исследуемой совокупности по тому или иному признаку требует проверки гипотезы о принадлежности "выделяющихся" (аномальных) значений признака исследуемой генеральной совокупности.

Другим важным требованием, обеспечивающим надежность выводов корреляционного анализа, является требование достаточного числа наблюдений. Как уже указывалось, влияние существенных причин может быть затушевано действием случайных факторов, "взаимопогашение" влияния которых на результативный показатель в известной мере происходит при выведении средней результативного показателя для массы случаев.

Определенные требования существуют и в отношении факторов, вводимых в исследование. Все множество факторов, оказывающих влияние на величину результативного показателя, к действительности не может быть введено в рассмотрение, да практически в этом и нет необходимости, так как их роль и значение в формировании величины результативного показателя могут иметь существенные различия. Поэтому при ограничении числа факторов, включаемых в изучение, наряду с качественным анализом целесообразно использовать и определенные количественные оценки, позволяющие конкретно охарактеризовать влияние факторов на результативный показатель (к оценкам можно отнести парные коэффициенты корреляции, ранговые коэффициенты при экспертной оценке влияния факторов и др.). Включаемые в исследование факторы должны быть независимыми друг от друга, так как наличие тесной связи между ними свидетельствует о том, что они характеризуют одни и те же стороны изучаемого явления и в значительной мере дублируют друг друга.

Для характеристики тесноты корреляционной связи между признаками в аналитических группировках межгрупповую дисперсию сопоставляют с общей.

Это сопоставление называйся корреляционным отношением и обозначается:

η222.

Оно характеризует долю вариации результативного признака, вызванной действием факторного признака, положенного в основание группировки. Корреляционное отношение по своему абсолютному значению колеблется в пределах от 0 до 1. Чем ближе корреляционное отношение к 1, тем большее влияние оказывает факторный признак на результативный. Если же факторный признак не влияет на результативный, то вариация, обусловленная им, будет равна нулю (δ2= 0) и корреляционное отношение также будет равно нулю (η2= 0), что говорит о полном отсутствии связи. И наоборот, если результативный признак изменяется только под воздействием одного факторного признака, то вариация, обусловленная этим признаком, будет равна общей вариации (η22) и корреляционное отношение будет равно единице (η2= 1), что говорит о существовании полной связи.

Дисперсионный анализ позволяет не только определить роль случайной и систематической вариаций в общей вариации, но и оценить достоверность вариации, обнаруженной методом аналитических группировок. Определение достоверности вариации дает возможность с заданной степенью вероятности установить, вызвана ли межгрупповая вариация признаком, положенным в основание группировки, или она является результатом действия случайных причин. Для оценки существенности корреляционного отношения пользуются критическими значениями корреляционного отношения η2 при разных уровнях вероятности или значимости α.

Квадрат множественного коэффициента корреляции называется множественным коэффициентом детерминации. Он показывает, какая доля дисперсии результативного признака объясняется влиянием независимых переменных.

Также это квадрат корреляции Пирсона между двумя переменными (rІ). Он выражает количество дисперсии, общей между двумя переменными.

В случае двух переменных формула для вычисления множественного коэффициента детерминации имеет вид:

Часто необходимо корректировать коэффициент множественной детерминации на потерю степеней свободы вариации:

где

- скорректированное значение множественного коэффициента корреляции;
- число наблюдений;
- число переменных, вошедших в модель.

Наблюдаемое значение находится по формуле:

Иногда показателям тесноты связи можно дать качественную оценку (шкала Чеддока):

Количественная мера тесноты связи

Качественная характеристика силы связи

0,1-0,3 Слабая
0,3-0,5 Умеренная
0,5-0,7 Заметная
0,7-0,9 Высокая
0,9-0,99 Весьма высокая

Функциональная связь возникает при значении равном 1, а отсутствие связи - 0. При значениях показателей тесноты связи меньше 0,7 величина коэффициента детерминации всегда будет ниже 50%. Это означает, что на долю вариации факторных признаков приходится меньшая часть по сравнению с остальными неучтенными в модели факторами, влияющими на изменение результативного показателя. Построенные при таких условиях регрессионные модели имеют низкое практическое значение.

2.2. Метод параллельных рядов

Особая роль в выявлении связей не только между качествен­ными, но и количественными признаками принадлежит парал­лельным статистическим рядам.

Параллельные ряды как метод выявления взаимосвязей пользуются давно. Наличие параллельных рядов признака-фактора (х) и при знака-следствия (у) позволяет выявить и изобразить корреляционные зависимости графически в прямоугольной системе коор­динат.

Если отложить значения х на оси абсцисс, а значение у — на оси ординат и нанести точки соотношений х и у, то мы получим корреляционное поле, где по расположению точек можно судить о характере и степени связи.

Если точки беспорядочно разбросаны по всему полю (а), то какой-либо связи между признаками нет. Если они сосредоточены на оси, направленной снизу вверх и слева направо (б), то имеется прямая зависимость, а если точки распределены сверху вниз и слева направо (в), то зависимость будет обратной. Если точки при прямой или обратной зависимости не расплываются в облаке, а сосредоточены на одной линии (г), то в этом случае мы имеем сильную прямую или обратную связь.