Таблиця 3
Обчислення характеристик центра розподілу
Групи одиниць сукупності за результативною ознакою | Кількість одиниць (частота), f | Середина інтервалу (варіанти), x/ | Варіанти зважені на частоти, x/f | Кумулятивні частоти, S |
3–18,4 | 33 | 10,7 | 353,1 | 33 |
18,4–33,8 | 15 | 26,1 | 391,5 | 48 |
33,8–49,2 | 9 | 41,5 | 373,5 | 57 |
49,2–64,6 | 3 | 56,9 | 170,7 | 60 |
Всього | 60 | – | 1288,8 | – |
Для інтервального варіаційного ряду порядок розрахунку моди та медіани наступний: спочатку находять інтервал, якому належить мода чи медіана, а потім розраховують відповідні значення цих показників.
Модальним в даному розподілі є інтервал 3-18,4, так як найбільше число банків f=33 находиться в цьому інтервалі. Значення моди визначається за формулою:
млн. грн.де і –величина інтервалу; fMo – частота модального інтервалу; fMo-1 – частота інтервалу, що передує модальному; fMo+1 – частота інтервалу, наступного за модальним.
Моду можна визначити за гістограмою розподілу.
Гістограма – це графічне зображення інтервального варіаційного ряду. На осі абсцис відкладають розміри ознак (варіанти). Утворені прямокутники пропор-ційні за висотою частотам значень ознаки по кожному інтервалу[5].
Рис. 1. Гістограма розподілу активів на кінець 2000 р.
Медіана відповідає варіанту, що стоїть в середині ранжированого ряду. Положення медіани визначається її номером:
Місце медіани
, де n - число одиниць сукупності.Медіанним є інтервал 3-18,4, так як в цьому інтервалі находяться номери 30 і 31 ряду.
млн. грн.
де xMe – нижня границя медіанного інтервалу; і – величина інтервалу; S(Me-1) – накопичена частота інтервалу, що передує медіанному; f – частота медіанного інтервалу.
Медіана визначається по кумуляті. Для її визначення висоту найбільшої ординати, котра відповідає загальній кількості, ділять пополам. Через отриману точку проводять пряму, паралельно вісі абсцис, до перетину її з кумулятою. Абсциса точки перетину є медіанною величиною[1].
Рис. 2. Кумулятивна крива розподілу активів на кінець 2000 р.
Середня величина активів на кінець 2000 року дорівнює
млн. грн.Висновки І. Вибірка факторної ознаки – активів банків має характеристики:
Мода – це величина, яка найчастіше зустрічається в даній сукупності. У варіаційному ряді це буде варіант, що має найбільшу частоту.
Мода активів досліджуємої вибірки банків= 12,96 млн. грн.
Медіана – це варіант, що знаходиться в середині упорядкованого варіаційного ряду, тобто ділить його на дві рівні частини. Медіана показує величину варіюючої ознаки, якої досягла половина сукупності.
Медіана активів досліджуємої вибірки банків = 17,23 млн. грн.
Середня величина це показник, що характеризує типовий рівень варіюючої ознаки в розрахунку на одиницю однорідної сукупності.
Середня величина активів розрахована за формулою середньої зваженої і дорівнює = 21,48 млн. грн.
Різниця між середньою величиною та характеристиками моди і медіани вибірки факторної ознаки свідчить про наявність суттєвих нерівномірностей кількісного розподілу банків по гістограмам факторних та результативних ознак,
тобто середня величина для даної виборки є недостатньо характерна величина.
Завдання етапу 2.
За вихідними даними 2000 р. (табл. 1) побудувати ряд розподілу за резуль-тативною ознакою, утворивши 4 групи з рівними інтервалами. На його основі обчислити характеристики розподілу – середню величину, моду і медіану (аналі-тично і графічно). Методику обчислення середньої величини та необхідних величин для розрахунку показати в таблиці.
Обираємо результативну ознаку – прибуток. Групування виконується при рівних інтервалах та числі груп 4. Розмір інтервалу визначається за формулою[3]:
Розмір інтервалу приймається рівним 1,75 млн.грн.. Розраховуємо та побудуємо табл.4
Таблиця 4
Обчислення характеристик центра розподілу
Групи одиниць сукупності за результативною ознакою | Кількість одиниць (частота), f | Середина інтервалу (варіанти), x/ | Варіанти зважені на частоти, x/f | Кумулятивні частоти, S |
0,2 – 1,95 | 21 | 1,075 | 22,575 | 21 |
1,95 – 3,7 | 26 | 2,825 | 73,45 | 47 |
3,7 – 5,45 | 8 | 4,575 | 36,6 | 55 |
5,45 – 7,2 | 5 | 6,325 | 31,625 | 60 |
Всього | 60 | – | 164,25 | – |
Модальним в даному розподілі є інтервал 1,95–3,7, так як найбільше число банків f=26 находиться в цьому інтервалі. Значення моди визначається за формулою:
млн. грн.де і –величина інтервалу; fMo – частота модального інтервалу; fMo-1 – частота інтервалу, що передує модальному; fMo+1 – частота інтервалу, наступного за модальним.
Рис. 3. Гістограма розподілу прибутку 2000 р. по 60 банках.
Місце медіани
, де n - число одиниць сукупності.Медіанним є інтервал 1,95–3,7, так як в цьому інтервалі находяться номери 30 і 31 ряду.
млн. грн.
де xMe – нижня границя медіанного інтервалу; і – величина інтервалу; S(Me-1) – накопичена частота інтервалу, що передує медіанному; f – частота медіанного інтервалу.
Рис. 4. Кумулятивна крива розподілу прибутку 2000 р. по 60 банках.
Середня величина прибутку 2000 року дорівнює
млн. грн.Висновки ІІ. Вибірка результативної ознаки – прибутку банків має наступні характеристики:
Мода – це величина, яка найчастіше зустрічається в даній сукупності. У варіаційному ряді це буде варіант, що має найбільшу частоту.
Мода прибутку досліджуємої вибірки банків= 2,33 млн. грн.
Медіана – це варіант, що знаходиться в середині упорядкованого варіаційного ряду, тобто ділить його на дві рівні частини. Медіана показує величину варіюючої ознаки, якої досягла половина сукупності.
Медіана прибутку досліджуємої вибірки банків = 2,59 млн. грн.
Середня величина це показник, що характеризує типовий рівень варіюючої ознаки в розрахунку на одиницю однорідної сукупності.
Середня величина прибутку розрахована за формулою середньої зваженої і дорівнює = 2,738 млн. грн.
Характер різниця між середньою величиною та характеристиками моди і медіани вибірки результативної ознаки повторює характер відповідних різниць між середньою величиною, модою та медіаною вибірки факторного признаку , тобто показники ранжирувані за зростанням у порядку Мода-Медіана-Середньозважена величина. Це свідчить про наявність суттєвих нерівномірностей кількісного розподілу банків по гістограмам факторних та результативних ознак,
тобто підтверджується гіпотеза , що середня величина для даної виборки є недостатньо характерна величина.
Для побудови подальших висновків необхідне продовження статистичного аналізу.
ІІІ. Обчислення показників варіації.
Завдання етапу 3.
За даними ряду розподілу побудованому в п. ІІ обчислити:
- розмах варіації;
- середнє лінійне відхилення;
- середнє квадратичне відхилення;
- дисперсію;
- коефіцієнт варіації.
Вихідні дані та розрахунки необхідних величин для обчислення всіх показників варіації подати в робочій таблиці.
Розмах варіації
млн. грн., де xmax, xmin – максимальне та мінімальне значення ознаки.Середнє лінійне відхилення обчислюється як частка від ділення суми всіх відхилень на їх число[2]