Смекни!
smekni.com

Прогнозирование и планирование в экономике (стр. 5 из 7)

2. Суть метода экспоненциального сглаживания состоит в том, что временной ряд сглаживается с помощью взвешенной скользящей средней, в кот. приписываемые уровнем ряда подчиняются экспоненциальному закону, взвешенные уровни ряда характеризуют значение исследуемого показателя на конец интервала сглаживания. Т.о. придавая последним членам динамического ряда большую значимость чем первым. Основная цель экспоненциального сглаживания состоит в вычислении рекурентных поправок к коэф-ам уравнения тренда. Для прямолинейной зависимости вида у=а+вt расчеты ведутся след. образом:

- определяются начальные условия сглаживания первого S0¹ и второго S0² порядка след. образом:

S0¹= a-(1-α)/α*b

S0² = a-2(1-α)/α*b

a, b – параметры уравнения тренда, построенного на основе анализа тенденции исходного временного ряда.

α=2/n+1

n – число уровней динамического ряда

- рассчитывается экспоненциальные средние первого и второго порядка

St¹(y)=α*yt + (1-α) * S¹t-1(y)

St²(y)=α * St¹(y) + (1-α) * S²t-1(y)

yt – начальный уровень исходного динамического ряда.

S¹t-1(y) – расчетное значение соответствующее начальному уровню сглаживания (для первого расчета) и экспоненциальной средней первого порядка для предыдущих расчетов (в случае последующих вычислений)

S²t-1(y) – расчетное значение соответствующее начальным условиям сглаживания и экспоненциальной средней предыдущего расчета второго порядка.

- осуществляется оценка коэф-тов исходного уравнения трнда с учетом экспоненциальных весов.

аэ = 2 * St¹(y) - St²(y)

вэ = a/1-a * (St¹(y) - St²(y))

- определяются расчетные уровни сглаженного ряда

yt1 = аэ + вэt1

yt2 = аэ + вэt2 и т.д.

Тема: Прогнозирование по корреляционно-регрессионным моделям

1. Особенности прогнозирования по парным регрессионным моделям.

2. Многофакторное прогнозирование.

3. Прогнозирование по авторегрессионым моделям.

4. Методы исключения автокорреляции из рядов динамики.

1. Корреляционный анализ предполагает изучение взаимосвязи м/у двумя и более показателями. Различают след. виды связей:

- функциональные

- статистические

Функциональная связь имеет место, если изменения одних явлений вызывают вполне определенное изменение других. Такие связи выражаются уравнениями строго определенного вида.

Статистическая связь – это разновидность статистических связей, хар-ся тем, что изменение одного признака под воздействием др. признаков явл. общим случаем, хар-им среднюю колеблемость рассматриваемых показателей.

Уравнение, отражающее статистическую связь м/у показателями называется уравнением регрессии. Разработка этого ур-я явл. способом кол-го представления влияния фактора и нескольких факторов на исследуемый показатель. Парные корреляционно-регрессионные модели отражают взаимосвязь м/у исследуемым показателем у и одним фактором х. в общем виде: y=f(x) частные:

y=a±bx; y=a+b/x

у – исследуемый (прогн-мый) показатель

х – фактор, оказывающий влияние на исследуемый показатель.

Прогнозирование по парным КРМ² включает след. этапы:

- выбор независимой переменной существенно влияющий на исследуемый показатель. Существенность влияния фактора на исследуемый показатель опред-ся по коэффициенту парной корреляции.

r = n*Σy*x – Σy * Σx / √n * Σy² - Σy² * √n * Σx² - Σx²

Для прогнозов используются такие связи, в кот. коэф-т парной корреляции превышает 0,8

- определяется форма уравнения регрессии

- оцениваются параметры уравнения регрессии с использованием метода наименьших квадратов

∑y = a*n + b∑x

∑y*x = a∑x + b∑x²

y = a ± bx

- рассчитываются прогнозные значения исследуемого показателя у путем подстановки в построенное КР уравнение значения фактора х определяемого для периода упреждения след. способами:

· путем расчета прогнозного значения фактора по уравнению тренда вида x = f(t)

· путем подстановки в КР модель планируемого (нормативного) значения фактора х на перспективу.

2. Сущность многофакторного прогнозирования состоит в расчете прогнозных значений исследуемого показателя по уравнению множественного КР анализа, построенного на основе изучения взаимосвязей м/у показателем у и несколькими факторами х1, х2, …, хn существенно влияющими на него. В общем виде: полином 1-й степени:

у = а1х1 + а2х2 + … + аnxn

Этапы многофакторного прогнозирования:

- анализ динамики исследуемого показателя;

- установление факторов влияющих на исследуемый показатель и отбор наиболее существенных. Отбор наиболее существенных факторов для включения в модель множественной корреляции может осуществляться след. способами:

а) на основе расчета парных коэф-тов корреляции м/у у и каждым из факторов. В модель включаются факторы с наибольшими показателями парного коэф-та корреляции.

б) на основе расчета частных коэф-тов корреляции, кот. предлагают изучения воздействия 1-го из факторов на показатель у при закреплении других на постоянном уровне.

в) на основе пошагового КР анализа. В этом случае в результате последовательного включения факторов в модель оцениваются показатели расчетного критерия Стьюдента коэф-т множественной корреляции, частные коэф-ты корреляции и коэф-ты детерминации.

Окончательный отбор факторов осущ-ся для случая с наилучшими хар-ми модели. Если м/у факторами модели сущ-ет тесная связь, то такие факторы одновременно включать в модель нельзя. |r|>0,6 в этом случае наблюдается явление мультиколениарности. Количество факторов включаемых в модель многофакторного прогнозирования д.б. в 5-6 раз меньше числа наблюдений.

- устанавливается форма связи м/у у и факторами х путем анализа различных коэф-тов статистической оценки, а именно: коэф-т множественной корреляции хар-ет тесноту связи м/у у и всеми факторами; коэф-т детерминации хар-ет долю изменения у обусловленную воздействием включенных в модель факторов; анализом F, T- критериев; анализом ошибки аппроксимации Е< 10-15% хар-ет соответствие выбранного уравнения регрессии реальным экономическим условиям.

- осущ-ся качественно-логический и статистический анализ многофакторного уравнения

- рассчитываются прогнозные значения показателя у на основе предварительной экстраполяции тенденции для факторов х.

Многофакторный анализ позволяет устанавливать тенденции изменения показателей и оценивать варианты воздействия факторов на исследуемый показатель в перспективе.

3. Прогнозирование по авторегрессионым моделям основывается на выявлении и изучении взаимосвязей м/у последовательными значениями одной и той же случайной величины. Это имеет место в тех случаях, когда изменения исследуемого показателя обусловлены не столько действием на него каких-либо факторов, сколько внутренними объективными причинами.

Авторегрессионая модель имеет след. вид:

Yt = a1Yt-1 + a2Yt-2 + … + anYt-n, где

А1, а2, an – параметры уравнения авторегрессии

Yt-1 – значение исследуемого показателя (t-1) уровня ряда, отнесена к t-му уровню.

Yt-2 – значение исслед-го к уровню t

n – порядок уравнения авторегрессии.

Параметры авторегрессионого уравнения вида Yt = a1Yt-1 + a2Yt-2 рассчитываются по системе уравнений след. вида:

Σ(Yt*Yt-1) = a1 * ΣYt-1² + a2 * ΣYt-1 * Yt-2

Σ(Yt * Yt-2) = a1 * ΣYt-1 * Yt-2 + a2 * Σyt-2²


Наличие или отсутствие авторегрессии (автокорреляции) в рядах динамики определяется по критерию Дарбина -Уотсона

d = 2 * (1 – Σγt * γt-1 / Σγt², .где

γt – это отклонение фактических уровней исходного динамического ряда от их расчетных величин

γt = yф – yр

Расчетные величины – это те, кот. получены из уравнения тренда

ур = а±bt

γt-1 – отклонение уф от ур (t-1)-го уровня ряда, отнесенные к уровню t/

N – число уровней ряда.

Если расчетный критерий Дарбина-Уотсона

d = 0, то имеет место сильная положительная автокорреляция

d = 4, то имеет место сильная отрицательная автокорреляция

d = 2, то автокорреляция в рядах динамики отсутствует.

0<=d<=4

Если рассчитанный критерий d не соответствует определенным уровням, то наличие автокорреляции определяется в зависимости от длины динамического ряда по разработанной таблице с нижним и верхним уровнем критерия. Если d<dн (нижний уровень критерия), то в динамическом ряду имеет место автокорреляция. Если d>dв (верхний уровень критерия), то автокорреляция отсутствует. Если критерий находится в пределах dн и dв (dн<=d<=dв), то наличие корреляции или ее отсутствие м. подтвердиться только путем дополнительных вычислений для большего числа уровней ряда.

Причинами автокорреляции в динамических рядах м.б.:

- неправильный выбор формы связи м/у переменными;

- ошибки измерения исследуемых показателей, относящихся к разным уровням ряда;

- в моделях корреляционно-регрессионного анализа не полный учет факторов, влияющих на у.

При прогнозировании по одиночным временным рядам наличие автокорреляции в исследуемом ряду уточняет прогнозные оценки. При прогнозировании по корреляционно-регрессионным моделям автокорреляция снижает точность и достоверность прогноза и является недопустимой, поэтому построение, анализ и использование в прогнозировании корреляционно-регрессионных зависимостей д. осущ-ся вместе с исключением явления автокорреляции из динамических рядов показателей у и х.

4. Для исключения автокорреляции из рядов динамики используют след. методы:

- Метод конечных разностей. В этом случае при использовании этого метода в качестве числовых величин, подлежащих обработке, выступают не исходные уровни динамических рядов, а разности последующего и предыдущего членов ряда к-го порядка, если связь м/у показателями у и х является линейной, то рассчитываются разности 1-го порядка, а уравнение парной корреляции имеет вид: