Смекни!
smekni.com

Шпаргалка по Эконометрике (стр. 5 из 6)

d(t1)= 1, если месяц t – зимний и d(t1) = 0 в остальных случаях.

d(t2)=1, если месяц весенний и d(t2) = 0 в остальных случаях.

d(t3) = 1, если месяц летний и d(t3) = 0 в остальных случаях.

В данном примере оценивается уравнение следующего вида:

Y(t)=a0+a1*d(t1)+a2*d(t2)+a3*d(t3)+e (5,4)

4 фиктивная переменная для осени не вводится, т.к. тогда для любого месяца tвыполнялось бы тождество: d(t1)+d(t2)+d(t3)+d(t4)=1, что означало бы линейную зависимость коэффициентов регрессии и, как следствие, невозможность получения оценок метода наименьших квадратов. Т.о. среднемесячный объем потребления есть а0 для осенних месяцев, а0+а1 – для зимних, а0+а2 – для весенних, а0+а3 – для летних.

Оценки коэффициентов а1, а2, а3 показывают среднее сезонное отношение объемов потребления по отношению к осенним месяцам. Например, тестируя гипотезу а3=0, проверяют предположение о несущественном различие в объемах потребления м/д летним и осенним сезонами. Гипотеза а1=а2 эквивалентна предположению об отсутствии различий в потреблении м/д весной и зимой.

Фиктивные переменные, несмотря на внешнюю простоту, являются гибким экспериментом при исследовании влияния качественных признаков. В предыдущей модели рассматриваются различия лишь для среднемесячных объемов потребления. При ее модификации вводят новую независимую переменную I-доход, используемый на потребление. Известно, что в уравнении регрессии данная переменная занимает следующее место: Y(t)=a0+a1*I(t)+ e(5,5)

Коэффициент а1 носит название «склонность к потреблению». Поэтому стоит задача исследования влияния сезона на склонность к потреблению. Для этого используют след. модель:

Y(t)= a0+a1*d(t1)+a2*d(t2)+a3*d(t3)+a4*d(t1)*I(t)+ a5*d(t2)*I(t)+a6*d(t3)*I(t)+a7*I(t)+ e (5.6)

Согласно этой модели склонность к потреблению зимой – а4+а7, весной – а5+а7, летом – а6+а7, осенью – а7. Как и в предыдущей моделе можно тестировать гипотезы об отсутствие сезонных колебаний на склонность к потреблению. Фиктивные переменные позволяют строить и оценивать кусочно-линейные модели. Пример. Пусть Y- это зависимая переменная, и присутствуют только 2 независимые переменные – постоянный член – Х. Пусть Х и Y представлены в виде временых рядов [(X(t); Y(t)), t=1, 2,…, n]. Пусть в момент t0 произошла структурная перестройка и линия регрессии будет отличаться от той, что была до момента t0, но общая ситуация остается непрерывной. (график)

чтобы оценить такую модель вводится фиктивная величина R(t). Полагая, что R(t) = 0 при t<=t0, и R(t) = 1при t>t0. Далее используется регрессионная модель следующего вида:

Y(x)=a1+a2*x(t)+a3*(x(t)-x(t0))*R(t)+ e (5.7)

Регрессионная линия, соответствующая уравнению (5,7) имеет коэффициент наклона а2 для t<=t0, и а2+а3 для t>t0. Т. о., разрыва в линии регрессии не происходит. Тест а3=0 проверяет предположение о том, что фактического структурного изменения не произошло. Этот подход обобщает структурные изменения в пределах одного временного интервала.

Вывод:

1. для исследования влияния нач. признаков в модель можно вводить фиктивные переменные, которые принимают значение 1, если данный начальный признак присутствует в наблюдении и значение 0 , если он отсутствует.

2. Способ включения фикт. переменных зависит от информации относительно влияния соответствующих качественных признаков на зависимую переменную и от гипотез, которые необходимо проверить.

3. От способа включения фик. переменной зависит содержательная интерпритация коэффициента при ней.

34. Оценка кусочно-линейной модели с помощью фиктивной переменной.

(смотри вопрос 33)

35. Понятие эконометрич-го прогнозирования, его значение.

Под прогнозом понимается эмпирическое или научно-обоснованное представление о возможных состояниях объекта прогнозирования в будущем.

Процесс прогнозирования состоит в том, чтобы конкретным методом с использованием определенного инструментария обработать имеющуюся информацию о состоянии изучаемого объекта, о наблюдавшихся ранее тенденциях и условиях его функционирования и превратить полученные данные в систему представлений о будущем состоянии или поведении объекта.

Базой для социально-экономического прогнозирования является познание конкретных факторов, определяющих развитие социально-экономических явлений. Прогноз носит вероятностный характер. Однако поскольку он строится на основе аргументированных научных представлений, его можно считать достаточно достоверным. Искусство прогноза включает последние достижения экономической теории статистики, математики и информатики. На этапе прогнозирования формируются возможные цели развития как на общенациональном, так и на отраслевом и региональном уровнях управления. Прогнозированием занимаются гос. Управления разных уровней, специализированные коммерческие фирмы, частые страховые, банковские и торговые корпорации.

Прогнозы на федеральном уровне учитывают результаты исследований, проводимых частными организациями и корпорациями. Т. о., можно сказать, прогнозирование составляет фундамент предпринимательской и управленческой деятельности в любой сфере.

Система прогнозирования предполагает единство методологии организации и разработки прогнозов, которая обеспечивает их согласованность, преемственность, непрерывность.

36. Эконометрич-е прогнозирование микроэкономических показателей.

В условиях рыночной экономики формирование направлений развития хоз. деят-ти предприятий должно основываться на учете прогнозных оценок влияния различных факторов. Используя эконометрические расчеты можно выполнить следующие вычисления: 1) установить прогнозные уровни результативных показателей и факторов, к-ые их формируют; 2) определить прогнозные уровни факторов при прогнозированном значении результативного признака.

Пример 1. Исследованию подвергается ряд динамики уровня рентабельности отдельного предприятия. Для проведения прогнозных расчетов используется след. формула прогнозной зависимости:

(7.1), где Y(t) – уравнение тренда; Ymin – min значение результативного признака; b – параметр тренда; d – знак отклонений коэффициентов сравнения; Ti – значение символа года; Tmin – нижнее значение символа года.

<Таблица 1. Расчет параметров ур-ия тренда.>

Параметр ур-ия тренда определяется по след. формуле:

(7.2). b=0,06072. Он показывает, что при изменении ряда динамики на 1 ед-цу (один год) размер отклонений коэф-та сравнения результативного признака возрастет в 0,06072 раз.

Достоверность расчетов подтверждает равенство итоговых сумм фактических и теоретических значений результативного признака.

Критерием получения прогнозных расчетов является вычисление для данного ур-ия коэф-та устойчивости.

<Таблица 2. Расчет коэф-та устойчивости тренда.>

(7.3)

Это значение коэф-та устойчивости по шкале зависимости свид-ет о высоком уровне значимости и устойчивости связи. Т. о., предложенная модель пригодна для прогноза.

<Таблица 3. Расчет прогнозных значений.>

Построим график. <График.>

37. Построение эконометрической модели экономич. роста

Прогноз экономического роста учитывает требования прогноза уровня жизни к величине экономического и военно-стратегического прогноза. Наибольшее распространение в прогнозировании экономического роста в странах с более или менее стабильной экономикой получили многофакторные модели, типа y(x)=f(x1, x2, x3, …, xk).

Используются также и однофакторные модели, н-р, модель, выражающая зависимость экономического роста только от величины трудовых ресурсов (L) в краткосрочном периоде, когда изменение производственных фондов, т. е. капитала (К), незначительно по сравнению с предыдущим периодом. Наиболее известна двухфакторная модель в форме произв-ой ф-ии: y(x)=a0 *Kα *Lβ (7.4).

В зависимости от значений α и β рассматриваются три типа экономического роста:

1)α + β = 1 – выпуск нац. продукта увеличивается пропорционально затратам факторов произ-ва (капитала и труда). Суммарная эк-ая эф-ть остается неизменной, происходит чисто экстенсивное расширение произ-ва, когда низкая эф-ть капитала покрывается приростом трудовых ресурсов.

2)α + β > 1 – этоозначает, что при росте факторов произ-ва в n раз выпуск продукции увеличивается более, чем в n раз, т. е. рост произ-ва отражает рост совок-ых затрат факторов. Помимо этого данный эффект может присутствовать, когда под воздействием достижений НТП повышается эф-ть произ-ых фондов или трудовых ресурсов.