Смекни!
smekni.com

Статистика вивчення продуктивності великої рогатої худоби (стр. 3 из 6)


Таблиця 2.2. Ранжування вибірки за другою факторною ознакою Xj


Таблиця 2.3. Ранжування вибірки за результативною ознакою Y


Рис. 2.1. – Попередній графічний аналіз функціональних зв’язків в ранжованих вибірках

2.2 Группування результативної та факторних ознак

Таблиця 2.4. Інтервальний варіаційний ряд розподілу результативної ознаки

№ групи Групи за рівнем надою на 1 корову в ц Частоти Накопичувальні частоти
1 31,3–33,8 3 3
2 33,8–36,3 8 11
3 36,3–38,7 16 27
4 38,7–41,2 3 30
30

Таблиця 2.6. Показники середніх величин інтервалів группування

Проектне завдання №72 (ранжування по результативній ознаці Y)
№ п/п Витрати кормів на 1 корову, ц корм. один. Вихід телят на 100 корів, голів Надій на 1 корову, ц
Xi Xj Y
Група 4 (38,7–41,2)
Середні значення по групі 4 40,6 96,3 39,9
Група 3 (36,3–38,7)
Середні значення по групі 3 39,8 93,5 37,6
Група 2 (33,8–36,3)
Середні значення по групі 2 37,3 93,5 35,7
Група 1 (31,3–33,8)
Середні значення по групі 1 36,7 90,7 32,5
Середні значення по сукупності 38,9 93,5 36,8

Таблиця 2.5. Розподіл вибірки на групи за інтервалами результативної ознаки


3. Статистична оцінка продуктивності ВРХ та факторів, що на неї впливають

3.1 Ряди розподілу та їх графічне зображення (огіва, кумулята, гістограма, полігон)

Рис. 3.1. – Графічне зображення статистичних показників розподілу в групах ряду результативної ознаки Y

3.2 Узагальнюючі показники рядів розподілу, прості та зважені середні величини

Середня величина – це узагальнюючі показник, які характеризують рівень варіруючої ознаки в якісно однорідній сукупності.

Сукупність, яку ми збираємося характеризувати середньою величиною повинна бути:

1) якісно однорідною, однотипною;

2) складатися з багатьох одиниць.

Середні величини можуть бути абсолютними або відносними залежно від вихідної бази. Середні можуть бути прості і зважені.

Найбільш простим видом середніх величин є середньоарифметична проста:

, (3.1)

де n – кількість одиниць сукупності,

x – варіруюча ознака.

Вона застосовується в тому випадку, коли у нас варіруюча арифметична ознака має різні значення, і є незгруповані дані.

Якщо ж ми маємо згруповані дані, або варіруюча ознака зустрічається декілька раз, то застосовується середня арифметична зважена.

, (3.2)

де x – варіруюча ознака,

f – абсолютна кількість повторення варіруючої ознаки.

В табл. 3.1, використовуючи дані розрахунків табл. 2.4–2.5, наведені результати розрахунку середньозваженої середньої величини результативної ознаки Y – середньорічних надоїв молока на 1 корову.

Таблиця 3.1. Розрахунок зважених середніх, моди та медіани методом моментів

№ групи Групи за рівнем надоїв на 1 корову, ц Частоти f Центр інтервалу групи Yk Yk-Y4 (Yk-Y4)/4 (Yk-Y4)/4*f Yk*f |Y-Yср| |Y-Yср|*f |Y-Yср|^2 |Y-Yср|^2*f
1 31,3–33,8 3 32,47 -7,40 -1,85 -5,55 97,40 4,35 13,06 18,95 56,85
2 33,8–36,3 8 35,68 -4,19 -1,05 -8,38 285,40 1,15 9,16 1,31 10,49
3 36,3–38,7 16 37,64 -2,23 -0,56 -8,92 602,20 0,82 13,08 0,67 10,69
4 38,7–41,2 3 39,87 0,00 0,00 0,00 119,60 3,05 9,14 9,28 27,85
Разом 30 -22,85 1 104,60 44,44 105,88
Момент першого порядку -0,76
Середня способом моментів 36,82
Середня арифметична зважена 36,82
Мода в 3 групі 36,89
Медіана в 3 інтервалі 36,92
Середнє лінійне відхилення 1,48
Дисперсія 3,53
Середнє квадратичне відхилення 1,88
Коефіцієнт варіації 5,10

3.3 Мажорантність середніх показників та обчислення моди і медіани способом моментів

До середніх структурних відносяться дві величини, які називаються «мода» і «медіана».

Мода (модальна величина) ряду – це така величина, яка найбільш часто зустрічається в даному розподілі.

(3.3)

x0 – це нижня межа модального інтервалу.

i – величина інтервалу.

f2 – частота модального інтервалу,

f1 – частота передмодального інтервалу (того, що передує

модальному)

f3 – частота позамодального інтервалу (того, що йде після модального

інтервалу)

Медіаною називається така величина, що займає серединне положення у варіаційному ряду, в якому варіанти розташовані в зростаючому або спадаючому порядку.

Для дискретного ряду:

(3.4)

Для варіаційного ряду:

(3.5)

x0 – це нижня межа медіального інтервалу.

i – величина інтервалу.

Sm-1 – сума накопичених частот до медіанного інтервалу.

fm – частота медіанного інтервалу.

Структурні величини мода і медіана застосовуються для вивчення внутрішньої будови рядів розподілу, тобто їх структури.

В табл. 3.1 наведені результати розрахунків моди та медіани для вибірки результативної ознаки Y.

В табл. 3.2 наведені результати розрахунку показників рядів факторних та результативної ознаки за допомогою «електронних таблиць» Excel –2000 (вбудовані статистичні розрахунки).


Таблиця 3.2. Розрахунок показників рядів факторних та результативної ознаки за допомогою «електронних таблиць» Excel –2000 (вбудовані статистичні розрахунки)

3.4 Зважені показники варіації рядів розподілу (

)

Для вимірювання та оцінки варіації використовують абсолютні та відносні характеристики. До абсолютних відносяться: варіаційний розмах, середнє лінійне та середнє квадратичне відхилення, дисперсія; відносні характеристики представлені низкою коефіцієнтів варіації.

Варіаційний розмах характеризує діапазон варіації, це різниця між максимальним і мінімальним значеннями ознаки:

(3.6)

Узагальнюючою мірою варіації є середнє відхилення індивідуальних значень ознаки від центру розподілу.

Середня арифметична величина виборки розраховуэться як:

(3.7)

Середньозважене лінійне відхилення:

(3.8)

Середнє квадратичне відхилення:

(3.9)

Середній квадрат відхилень – дисперсія:

, (3.10)

де

- середнє арифметичне інтервального ряду розподілу, f – частота.

Середнє лінійне та середнє квадратичне відхилення – іменовані числа (в одиницях вимірювання ознаки).

Порівнюючи варіації різних ознак або однієї ознаки у різних сукупнос-тях, використовують відносні характеристики варіації. Коефіцієнти варіації розраховуються як відношення абсолютних, іменованих характеристик до центру розподілу і часто виражаються процентами:

Лінійний коефіцієнт варіації:

(3.11)

Квадратичний коефіцієнт варіації:

(3.12)

В табл. 3.1 – 3.2 наведені результати розрахунків показників варіації, виконані методом моментів та автоматизованим розрахунком вбудованими алгоритмами статистичної обробки.

Середньозважена величина вибірки методом моментів розраховується на основі таблиць групування 2.4 -2.5, 3.1 по формулі:

(3.13)

де mi - момент першого порядку для групування i – груп вибірки

а – один із показників середніх величин інтервалів в вибірці, для

спрощення вибираємо показник на одному з кінцевих інтервалів

(3.14)

4. Кореляційний аналіз продуктивності та факторів, що на неї впливають

4.1 Рангова кореляція – розрахунок коефіцієнта Спірмена (коефіцієнт кореляційних рангів)

Нехай

і
вибірки з безперервних розподілів (розподіл відмінний від нормального). Кожному значенню
поставимо у відповідність його ранг
у варіаційному рядові
. Аналогічно, кожному значенню
поставимо у відповідність його ранг
у варіаційному рядові
.