Интервальная оценка:
а0: 11,781
а0: 11,781
Нижняя граница: 11,781-3,735=8,046
Верхняя граница: 11,781+3,735=15,516
а0: (8,046
а1: 0,761
а1: 0,761
Нижняя граница: 0,761-0,254=0,507
Верхняя граница: 0,761+0,254=1,015
а1: (0,507
5. Вычислить коэффициент детерминации, проверить значимость уравнения регрессии с помощью F-критерия Фишера (α=0,05), найти среднюю относительную ошибку аппроксимации. Сделать вывод о качестве модели.
Для нахождения коэффициента детерминации найдём коэффициент парной корреляции:
Проверяем значимость
Находим коэффициент детерминации:
Значимость уравнения регрессии по критерию Фишера:
Средняя относительная ошибка аппроксимации:
x | y | | | |
17 | 26 | 24,718 | 1,282 | 0,0493 |
22 | 27 | 28,523 | -1,523 | 0,0564 |
10 | 22 | 19,391 | 2,609 | 0,1186 |
7 | 19 | 17,108 | 1,892 | 0,0996 |
12 | 21 | 20,913 | 0,087 | 0,0041 |
21 | 26 | 27,762 | -1,762 | 0,0678 |
14 | 20 | 22,435 | -2,435 | 0,1218 |
7 | 15 | 17,108 | -2,108 | 0,1405 |
20 | 30 | 27,001 | 2,999 | 0,1000 |
3 | 13 | 14,064 | -1,064 | 0,0818 |
133 | 219 | * | -0,023 | 0,7332 |
Так как
F-критерий намного больше табличного значения, коэффициент детерминации
6. Осуществить прогнозирование среднего значения показателя Y при уровне значимости α=0,1, если прогнозное значение фактора X составляет 80% от его максимального значения.
- прогноз факторного признака (объема капиталовложений).
(17,6; 25,2) – точка должна лежать на графике модели.
Интервальный прогноз:
25,2
25,2
Нижняя граница: 25,2-3,37=21,83
Верхняя граница: 25,2+3,37=28,57
То есть при уровне значимости
7. Представить графически фактические и модельные значения Y точки прогноза рис. 3.
Рис. 3
8. Составить уравнения нелинейной регрессии:
· Гиперболической;
· Степенной;
· Показательной.
Привести графики построенных уравнений регрессии.
9. Для указанных моделей найти коэффициенты детерминации, коэффициенты эластичности и средние относительные ошибки аппроксимации. Сравнить модели по этим характеристикам и сделать вывод.