Смекни!
smekni.com

Автокорреляционная функция Примеры расчётов (стр. 1 из 3)

Санкт-Петербургский институт машиностроения

Курсовая работа

по дисциплине Статистика

на тему

Автокорреляционная функция. Примеры расчётов

Выполнил

Студент курса

группы

отделения

Руководитель

Санкт-Петербург

2007


Содержание

Введение. 3

Глава 1. Теоретические сведения. 5

Коэффициент автокорреляции и его оценка. 5

Автокорреляционные функции. 7

Критерий Дарбина-Уотсона. 9

Глава 2. Примеры практических расчетов с помощью макроса Excel «Автокорреляционная функция». 11

Пример 1. ВВП РФ.. 11

Пример 2. Импорт. 15

Пример 3. Экспорт. 18

Заключение. 22

Литература. 23


Введение

Периодическая зависимость представляет собой общий тип компонент временного ряда. Можно легко видеть, что каждое наблюдение очень похоже на соседнее; дополнительно, имеется повторяющаяся периодическая составляющая, это означает, что каждое наблюдение также похоже на наблюдение, имевшееся в том же самое время период назад. В общем, периодическая зависимость может быть формально определена как корреляционная зависимость порядка k между каждым i-м элементом ряда и (i-k)-м элементом. Ее можно измерить с помощью автокорреляции (т.е. корреляции между самими членами ряда); k обычно называют лагом (иногда используют эквивалентные термины: сдвиг, запаздывание). Если ошибка измерения не слишком большая, то периодичность можно определить визуально, рассматривая поведение членов ряда через каждые k временных единиц [7, 153].

Периодические составляющие временного ряда могут быть найдены с помощью коррелограммы. Коррелограмма (автокоррелограмма) показывает численно и графически автокорреляционную функцию (AКФ), иными словами коэффициенты автокорреляции для последовательности лагов из определенного диапазона. На коррелограмме обычно отмечается диапазон в размере двух стандартных ошибок на каждом лаге, однако обычно величина автокорреляции более интересна, чем ее надежность, потому что интерес в основном представляют очень сильные[1] автокорреляции [6, 207].

При изучении коррелограмм следует помнить, что автокорреляции последовательных лагов формально зависимы между собой. Рассмотрим следующий пример. Если первый член ряда тесно связан со вторым, а второй с третьим, то первый элемент должен также каким-то образом зависеть от третьего и т.д. Это приводит к тому, что периодическая зависимость может существенно измениться после удаления автокорреляций первого порядка, (т.е. после взятия разности с лагом 1).

Цель работы:

1. Дать основные теоретические сведения

2. Дать примеры расчета АКФ


Глава 1. Теоретические сведения

Коэффициент автокорреляции и его оценка

Для полной характеристики случайного процесса недостаточно его математического ожидания и дисперсии. Еще в 1927 г. Е.Е.Слуцкий ввел для зависимых наблюдений понятие «связанного ряда»: вероятность возникновения на определенном месте тех или иных конкретных значений зависит от того, какие значения случайная величина уже получила раньше или будет получать позже. Иными словами, существует поле рассеяния пар значений x(t), x(t+k) временного ряда, где k - постоянный интервал или задержка, характеризующее взаимозависимость последующих реализаций процесса от предыдущих. Теснота этой взаимосвязи оценивается коэффициентами автоковариации –

g (k) = E[(x(t) - m)(x(t + k) - m)] –

и автокорреляции

r (k) = E[(x(t) - m)(x(t + k) - m)] / D ,

где m и D - математическое ожидание и дисперсия случайного процесса. Для расчета автоковариации и автокорреляции реальных процессов необходима информация о совместном распределении вероятностей уровней ряда p(x(t1),x(t2)). Однако для стационарных процессов, находящихся в определенном статистическом равновесии, это распределение вероятностей одинаково для всех времен t1, t2 , разделенных одним и тем же интервалом. Поскольку дисперсия стационарного процесса в любой момент времени (как в t, так и в t + k) равна D = g (0), то автокорреляция с задержкой k может быть выражена как [5, 312]

r (k) = g (k) /g (0),

откуда вытекает, что r (0) = 1. В тех же условиях стационарности коэффициент корреляции r (k) между двумя значениями временного ряда зависит лишь от величины временного интервала k и не зависит от самих моментов наблюдений t. [2]

В статистике имеется несколько выборочных оценок теоретических значений автокорреляции r (k) процесса по конечному временному ряду из n наблюдений. Наиболее популярной оценкой является нециклический коэффициент автокорреляции с задержкой k (Андерсон, 1976; Вайну, 1977):

Наиболее важным из различных коэффициентов автокорреляции является первый - r1, измеряющий тесноту связи между уровнями x(1), x(2) ,..., x(n -1) и x(2), x(3), ..., x(n).

Распределение коэффициентов автокорреляции неизвестно, позтому для оценки их достоверности иногда используют непараметрическую теорию Андерсона (1976), предложившего статистику [4, 112]

t = r1 (n -1)0.5 ,

которая при достаточно большой выборке распределена нормально, имеет нулевую среднюю и дисперсию, равную единице (Тинтнер, 1965).

Автокорреляционные функции

Последовательность коэффициентов корреляции rk, где k = 1, 2, ..., n, как функция интервала k между наблюдениями называется автокорреляционной функцией (АКФ).

Вид выборочной автокорреляционной функции тесно связан со структурой ряда.

· Автокорреляционная функция rk для «белого шума», при k >0, также образует стационарный временной ряд со средним значением 0.

· Для стационарного ряда АКФ быстро убывает с ростом k. При наличии отчетливого тренда автокорреляционная функция приобретает характерный вид очень медленно спадающей кривой [3, 268].

· В случае выраженной сезонности в графике АКФ также присутствуют выбросы для запаздываний, кратных периоду сезонности, но эти выбросы могут быть завуалированы присутствием тренда или большой дисперсией случайной компоненты.

Рассмотрим примеры автокорреляционной функции:

· на рис. 1 представлен график АКФ, характеризующегося умеренным трендом и неясно выраженной сезонностью;

· рис. 2 демонстрирует АКФ ряда, характеризующегося феноменальной сезонной детерминантой;

· практически незатухающий график АКФ ряда (рис. 3) свидетельствует о наличии отчетливого тренда.

Рис 1.

Рис 2.

Рис 3.

В общем случае можно предполагать, что в рядах, состоящих из отклонений от тренда, автокорреляции нет. Например, на рис. 4 представлен график АКФ для остатков, полученных от сглаживания ряда, очень напоминающий процесс «белого шума». Однако нередки случаи, когда остатки (случайная компонента h ) могут оказаться автокоррелированными, например, по следующим причинам [1, 172]:

· в детерминированных или стохастических моделях динамики не учтен существенный фактор[3]

· в модели не учтено несколько несущественных факторов, взаимное влияние которых оказывается существенным вследствие совпадения фаз и направлений их изменения;

· выбран неправильный тип модели (нарушен принцип контринтуитивности);

· случайная компонента имеет специфическую структуру.

Рис 4.

Критерий Дарбина-Уотсона

Критерий Дарбина-Уотсона (Durbin, 1969) представляет собой распространенную статистику, предназначенную для тестирования наличия автокорреляции остатков первого порядка после сглаживания ряда или в регрессионных моделях.

Численное значение коэффициента равно

d = [(e(2)-e(1))2 + ... + (e(n)-e(n -1))2]/[e(1)2 + ... + e(n)2],

где e(t) - остатки.

Возможные значения критерия находятся в интервале от 0 до 4, причем табулированы его табличные пороговые значения для разных уровней значимости (Лизер, 1971).

Значение d близко к величине 2*(1 - r1), где r - выборочный коэффициент автокорреляции для остатков. Соответственно, идеальное значение статистики - 2 (автокорреляция отсутствует). Меньшие значения соответствуют положительной автокорреляции остатков, большие – отрицательной [2, 193].

Например, после сглаживания ряда ряд остатков имеет критерий d = 1.912. Аналогичная статистика после сглаживания ряда - d = 1.638 - свидетельствует о некоторой автокоррелированности остатков.


Глава 2. Примеры практических расчетов с помощью макроса Excel «Автокорреляционная функция»

Все данные взяты с сайта http://e3.prime-tass.ru/macro/

Пример 1. ВВП РФ

Приведем данные о ВВП РФ

Год квартал ВВП первая разность
2001 I 1900,9
II 2105,0 204,1
III 2487,9 382,9
IV 2449,8 -38,1
2002 I 2259,5 -190,3
II 2525,7 266,2
III 3009,2 483,5
IV 3023,1 13,9
2003 I 2850,7 -172,4
II 3107,8 257,1
III 3629,8 522,0
IV 3655,0 25,2
2004 I 3516,8 -138,2
II 3969,8 453,0
III 4615,2 645,4
IV 4946,4 331,2
2005 I 4479,2 -467,2
II 5172,9 693,7
III 5871,7 698,8
IV 6096,2 224,5
2006 I 5661,8 -434,4
II 6325,8 664,0
III 7248,1 922,3
IV 7545,4 297,3
2007 I 6566,2 -979,2
II 7647,5 1081,3

Исследуем ряд