Суммарная матрица имеет вид
m – число экспертов, оценивающих данный набор признаков;
- оценки соответственно 1, 2, …, j, …, m экспертов; - суммарные оценки, данные всеми экспертами.Определяя дисперсию суммарной матрицы и сравнивая её с максимально возможной дисперсией матрицы с таким же числом элементов, можно определить согласованность мнений экспертов. Чем ближе дисперсия суммарной матрицы к максимально возможной дисперсии, тем выше согласованность мнений. Таким образом, метод парных сравнений позволяет провести строгий, статистически обоснованный анализ согласованности мнений экспертов, выявить, случайны или нет полученные оценки. Несомненно, процедура метода парных сравнений сложнее метода простой ранжировки, но проще метода последовательных сравнений.
Число экспертов, требуемое для оценки определенной совокупности признаков методом парных сравнений, в два раза больше, чем при использовании метода простой ранжировки, и в два раза меньше, чем при методе последовательных сравнений.
В настоящее время во многих методах проведения экспертных оценок предлагается в качестве показателя компетентности эксперта коэффициент:
где
- коэффициент компетентности эксперта; - коэффициент степени знакомства эксперта с обсуждаемой проблемой; - коэффициент аргументированности.Коэффициент степени знакомства с направлением исследований определяется путем самооценки эксперта по десятибалльной шкале. Значения баллов для самооценки следующие:
0 - эксперт не знаком с вопросом;
1,2,3 - эксперт плохо знаком с вопросом, но вопрос входит в сферу его интересов;
4,5,6 - эксперт удовлетворительно знаком с вопросом, не принимает непосредственного участия в практическом решении вопроса;
7,8,9 – эксперт хорошо знаком с вопросом, участвует в практическом решении вопроса;
10 – вопрос входит в круг узкой специализации эксперта.
Эксперту предлагается самому оценить степень своего знакомства с вопросом и подчеркнуть соответствующий балл. Затем этот балл умножается на 0,1, и получаем коэффициент.
Коэффициент аргументированности учитывает структуру аргументов, послуживших эксперту основанием для определенной оценки. Коэффициент аргументированности предлагается определить в соответствии с таблицей 3 путем суммирования значений, отмеченных экспертом в клетках этой таблицы.
Определив коэффициент компетентности, умножают на него значение оценок экспертов.
Таблица 3
Значения коэффициента аргументированности
1.2. Роль экспертов в управлении организацией
Современное общество развивается под постоянно усиливающимся воздействием научно-технической революции, которая вызывает коренные преобразования в производстве, глубокие изменения в структуре и экономике народного хозяйства. Происходящая научно-техническая революция по своему влиянию далеко выходит за пределы сферы материального производства, захватывая все стороны жизнедеятельности общества, предопределяя большинство решений, направленных на его рациональное экономическое и социальное развитие.
Особое значение в управлении сейчас приобретают методы оптимизации, основанные на применении формальных, чаще всего математических моделей, обеспечивающих экономию времени и средств при решении многих практических задач. Построение моделей помогает привести сложные и подчас неопределенные факторы, связанные с проблемой принятия решений, в логически стройную схему, определить, какие данные необходимы для оценки и выбора альтернатив.
В процессе управления возникает естественное стремление к отысканию решения, которое объективно является наилучшим из всех возможных. В качестве инструмента оптимизации сейчас широко используется математическое программирование. Успехи в применении математического программирования к решению различного рода хозяйственных, научных, технических и военных задач породили методологические воззрения, согласно которым кардинальное решение проблем управления возможно только тогда, когда все его аспекты отображаются в системе взаимосвязанных математических моделей.
Однако, формализация технико-экономических и управленческих решений осложняется рядом особенностей современного этапа научно-технического прогресса. Жизнь общества настолько сложна, что трудно рассчитывать на появление моделей, которые полностью отражали бы природу и количественные взаимосвязи социально-экономических процессов. Реальная действительность всегда сложнее самых тонких математических моделей, а ее развитие часто опережает формальное познание. Задачи управления требуют в качестве неотъемлемого элемента решения участия людей. И, наконец, сам процесс управления всегда предполагает ориентацию не только на числовые данные, но и на обычный здравый смысл. Использование математического программирования и вычислительной техники позволяет принимать решения, основанные на более полной и надежной информации. Но, несомненно и то, что при любых условиях для выбора рационального решения требуется нечто большее, чем хорошая математическая модель.
Принимая решения, мы обычно предполагаем, что информация, используемая для их обоснования, достоверно и надежна. Но для многих экономических и научно-технических задач, являющихся по своему характеру качественно новыми и неповторяющимися, это предположение либо заведомо не реализуется, либо в момент принятия решения его не удается доказать.
Наличие информации и правильность ее использования в значительной степени предопределяют оптимальность выбранного решения. Кроме данных, состоящих из числовых статистических величин, информация включает в себя другие, не поддающиеся непосредственному измерению величины, например, предположения о возможных решениях и их результатах. Практика показывает, что основные трудности, возникающие при поиске и выборе деловых решений, обусловлены прежде всего недостаточно высоким качеством и неполнотой имеющейся информации.
Основные трудности, связанные с информацией, возникающие при выработке сложных решений, можно подразделить на следующие группы.
Во-первых, исходная статистическая информация зачастую бывает недостаточно достоверной.
Во-вторых, некоторая часть информации имеет качественный характер и не поддается количественной оценке. Так, нельзя точно рассчитать степень влияния социальных и политических факторов на реализацию планов, оценить экономический эффект будущих изобретений и т.д. Но, поскольку эти факторы и явления оказывают существенное влияние на результаты решений, их нельзя не учитывать.
В-третьих, в процессе подготовки решений часто возникают ситуации, когда в принципе необходимую информацию получить можно, однако в момент принятия решения она отсутствует, поскольку это связано с большими затратами времени или средств.
В-четвертых, существует большая группа факторов, которые могут повлиять на реализацию решения в будущем, но их нельзя точно предсказать.
В-пятых, одна из наиболее существенных трудностей при выборе решений состоит в том, что любая научная или техническая идея содержит в себе потенциальную возможность различных схем ее реализации, а любое экономическое действие может приводить к многочисленным исходам. Проблема выбора наилучшего варианта решения может возникнуть и потому, что обычно существуют ограничения в ресурсах, а следовательно, принятие одного варианта всегда связано с отказом от других решений.
В-шестых, при выборе наилучшего решения мы нередко сталкиваемся с многозначностью обобщенного критерия, на основе которого можно произвести сравнение возможных исходов. Многозначность, многомерность и качественное различие показателей являются серьезным препятствием для получения обобщенной оценки относительной эффективности, важности, ценности или полезности каждого из возможных решений.
В связи с этим одна из главных особенностей решения сложных проблем состоит в том, что применение расчетов здесь всегда переплетается с использованием суждений руководителей, ученых, специалистов. Эти суждения позволяют хотя бы частично компенсировать недостаток информации, полнее использовать индивидуальный и коллективный опыт, учесть предположения специалистов о будущих состояниях объектов. Закономерность развития науки и техники состоит в том, что новые знания, научно-техническая информация накапливаются в течение длительного периода времени. Нередко это накопление идет в скрытой форме в сознании ученых и разработчиков. Они, как никто другой, способны оценить перспективы той области, в которой работают, и предвидеть характеристики тех систем, в создании которых непосредственно участвуют.
Опыт показывает, что использование несистематизированных суждений отдельных специалистов оказывается при решении многих сложных научных и технических проблем недостаточно эффективным вследствие многообразия взаимосвязей между основными элементами таких проблем и невозможности охвата их всех. При использовании традиционных процедур подготовки решений нередко не удается рассмотреть широкий диапазон факторов, учесть весь спектр альтернативных путей решения проблем.