Министерство образования и науки Украины
Пояснительная записка
к курсовой работе
по дисциплине Статистика
Комплексная статистическая обработка экспериментальных данных
Реферат
Объектом исследования данной работы является комплексный анализ сгенерированных выборок случайных величин и подбор их закона распределения.
Целью работы является изучение методов и приемов анализа статистической информации, получение навыков и опыта работы в пакете STATISTICA.
В данной работе применялись широко используемые статистические методы обработки и анализа данных.
Результатом работы является освоение методов обработки данных статистического наблюдения, их анализа с помощью обобщающих показателей, установление теоретических законов распределения случайных величин и доказательство адекватности этих законов.
Данную курсовую работу можно использовать в качестве наглядного пособия по обработке статистических данных для различных учебных целей и задач.
Задание на курсовой проект
По специально сгенерированному имитатору получить последовательности случайных чисел двух типов:
а)
,где
– номер варианта, - номер измерения случайной величины, – случайное число, возвращаемое при обращении к стандартной функции выбранного языка программирования – датчику случайных чисел.б)
.Для исследований предусмотреть следующие объёмы измерений для каждой из случайных величин: 100, 200, …, 1000 (объёмы выборок).
Произвести статистический анализ каждой из полученных выборок для двух случайных величин в следующей последовательности:
а) найти размах варьирования;
б) определить целесообразное количество групп по формуле Стерджесса, построить группировку и интервальный ряд;
в) привести графическое изображение полигона частот, гистограммы, кумуляты и эмпирической функции распределения;
г) вычислить и проанализировать точечные оценки
и для простого и интервального рядов; построить и проанализировать зависимость величины точечной оценки от объема выборки и от номера эксперимента (10 выборок для объема выборки 1000);д) построить доверительные интервалы для
и , используя различные значения доверительной вероятности (0,9; 0,95; 0,975; 0,995; 0,999) и проанализировать зависимость длины доверительного интервала от объёма выборки и от величины доверительной вероятности;е) вычислить и проанализировать медиану, коэффициент вариации, коэффициент асимметрии и эксцесс, моду; проанализировать зависимости числовых характеристик от объема выборки;
ж) оценить однородность каждой из выборок, используя:
1) коэффициент вариации;
2) метод
-статистик Ирвина.з) определить, близки ли к нормальному распределению полученные эмпирические распределения на основе:
1) анализа числовых характеристик положения и вариации;
2) на основе критерия согласия Пирсона;
и) по виду гистограмм выдвинуть гипотезу о предполагаемых законах распределений исследуемых случайных величин, определить оценки параметров предполагаемых распределений (метод моментов и максимального правдоподобия) и проверить гипотезу о законе распределения по критерию Пирсона.
Введение
С давних пор человечество осуществляло учет многих сопутствующих его жизнедеятельности явлений и предметов, а также связанных с ними вычислений. Люди получали разносторонние, хотя и различающиеся полнотой сведения на различных этапах общественного развития. Данные учитывались повседневно в процессе принятия хозяйственных решений, а в обобщенном виде и на государственном уровне – при определении направления экономической и социальной политики, характера внешнеполитической деятельности.
Выполняя самые разнообразные функции сбора, систематизации и анализа сведений, характеризующих экономическое и социальное развитие общества, статистика всегда играла роль главного поставщика факторов для управленческих, научно-исследовательских и прикладных практических нужд различного рода структур, организаций и населения. Роль статистики в нашей жизни настолько значительна, что люди, часто не задумываясь и не осознавая, постоянно используют элементы статистической методологии в повседневной практике.
Применяя статистические методы в экономических исследованиях, можно осуществлять стратегическое планирование, а также анализировать и прогнозировать рыночную конъюнктуру, уменьшая степень неопределенности в отношении внешнего окружения.
С увеличением объемов информации, становится актуальным вопрос ее компьютерной обработки. Получение навыков обработки и анализа экспериментальных данных с помощью компьютера, например, в пакете STATISTICA дает возможность получить полную информацию об исследуемом объекте и найти оптимальное решение конкретной поставленной задачи.
1. Генерация исходных данных
В данной курсовой работе вместо статистического наблюдения используются случайные величины, сгенерированные по следующим формулам:
1) непрерывная случайная величина X, определяемая по формуле 1.1;
(1.1)2) непрерывная случайная величина У, определяемая по формуле 1.2.
(1.2)где
, - значения случайной величины X и У в различных опытах; - случайное число, равномерно распределенное на отрезке [0, 1], возвращаемое при обращении к стандартной функции на выбранном языке программирования к датчику случайных чисел; Для генерации исходных данных были использованы следующие методы:1) Для случайной величины
в окне Variable в поле LongName была введена формула 1.3: (1.3)2) Для случайной величины
был создан программный имитатор в модуле STATISTICABASIC. Реализация алгоритма генерации данных в модуле STATISTICABASIC приведена в приложении А.В результате были получены выборки, объемом 100, 200…1000 значений для каждой из случайных величин.
2. Первичная обработка результатов наблюдения
2.1 Построение вариационного ряда
Вариационный ряд - упорядоченные по возрастанию значения признака.
Построение вариационного ряда в пакете STATISTICA производилось следующим образом:
вмодуле Basic Statistics and Tables: Analysis → Frequency tables → кнопка Variables длявыборапеременной → отметилиAlldistinctvalues → ОК.
Размах варьирования
– абсолютная величина разности между максимальным и минимальным значениями (вариантами) изучаемого признака: (2.1)Построение размаха варьирования в пакете STATISTICA производилось следующим образом:
в модуле Basic Statistics and Tables: Analysis → Descriptive statistics → Variables (выбратьпеременную) → нажали Box & whisker plot for all variables → выбрали Median / Quart. / Range → ОК.
Значения размаха варьирования для заданных выборок в таблице 2.1.
Таблица 2.1 – Размах варьирования для заданных выборок
Выборка | ||||||
100 | 25,201 | 6,993 | 18,209 | 28,805 | 2,429 | 26,376 |
500 | 25,110 | 6,984 | 18,126 | 33,695 | 0,196 | 33,499 |
1000 | 25,237 | 6,711 | 18,466 | 33,962 | -1,574 | 35,536 |
Случайная величина
имеет меньший размах, чем случайная величина .2.2 Группировка статистических данных
Число групп определяется по формуле Стерджесса (2.2):
, (2.2)