Проведем визуальный анализ данных путем построения корреляционного поля зависимости инвестиций flow от ВВП.
Рисунок 1 Корреляционное поле зависимости инвестиций flow от ВВП
Проанализировав данные и их графическое изображение, можно сделать предположение, что связь между признаками линейная и она описывается уравнением прямой:
х2 = а0 + а1 ∙ х1. (3)
Определим параметры уравнения прямой на основе метода наименьших квадратов, решив систем нормальных уравнений.
Откуда:
(5) (6)По формулам (5), (6) вычислим а0, а1, используя расчетные данные таблицы 4.
. .Вычислив параметры, получим следующее уравнение регрессии:
х2 = -602,190 + 0,042 ∙ х1.
Следовательно, с увеличением ВВП на 1 млн. долл., инвестиции flow увеличатся на 0,42% млн. долл.
Значимость коэффициентов регрессии проверим по t-критерию Стьюдента. Вычислим расчетные значения t-критерия по формулам:
для параметра а0:
, (7)для параметра а1:
, (8)где n – объем выборки,
среднее квадратическое отклонение результативного признака у от выровненных значений ух:
, (9)среднее квадратическое отклонение факторного признака х от общей средней
: . (10)Находим:
, , , .Вычисленные значения ta0 и ta1 сравнивают с критическими (табличными) t, которые определяют по таблице Стьюдента с учетом принятого уровня значимости а и числом степеней свободы вариации v = n -2 = 37–2 =35. В социально-экономических исследованиях уровень значимости а обычно принимают равным 0,05. Параметр признается значимым при условии, если tрасч> tтабл.
Так как tрасча0 = 5,611 больше tтабл = 3,000, параметр а0 признается значимым, т.е. в этом случае мало вероятно, что найденное значение параметра обусловлено только случайными совпадениями.
Так как tрасча1 = 8,686 больше tтабл = 3,000, следовательно, параметр а1 также признается значимым.
Выявим тесноту корреляционной связи между х и у с помощью линейного коэффициента корреляции, используя формулу:
. (11) .Т.к. линейный коэффициент корреляции r = 0,827, то связь между инвестициями flow и ВВП прямая, очень высокая связь.
Значимость линейного коэффициента корреляции определяется помощью t-критерия Стьюдента (число степеней свободы = 35, уровень значимости а = 0,05) по формуле:
. (12) .Так как
= 8,686 больше tтабл = 3,000, следовательно, коэффициент корреляции признается значимым.Определим линейный коэффициент детерминации r2:
r2 = 0,8272 = 0,683.
Он показывает, что 68,3% вариации инвестиций flow обусловлено вариацией ВВП.
Теоретическое корреляционное отношение η определим по формуле:
Т.к. r = η, то будем считать, что линейная форма связи между х1 и х2, выбрана верно.
Аналогично проведем расчет корреляции для остальных параметров.
Уравнение регрессии:
х3 = 2211,412 + 3,316 ∙ х2.
3821,256, 1205,708, 3,007, 5,437.