Смекни!
smekni.com

Статистические методы выявления взаимосвязей общественных явлений (стр. 1 из 5)

Всероссийский заочный финансово-экономический институт
(ВЗФЭИ)

КУРСОВАЯ РАБОТА

по статистике

«Статистические методы выявления взаимосвязей общественных явлений»

Выполнила:

Проверила:

Москва, 2006г.

План.

Содержание:

Введение.3

Виды и методы взаимосвязи.4

Виды взаимосвязи.. 4

Методы взаимосвязи.. 5

1. Аналитические группировки. 5

2. Метод параллельных рядов. 6

3. Балансовый метод. 7

4. Корреляционно-регрессионный анализ.7

Практическая часть.. 16

Аналитическая часть.. 24

Заключение.. 30

Список литературы... 31

Введение.

Все явления и процессы, протекающие в экономике любой страны взаимосвязаны между собой. Cстатистическое изучение этой взаимосвязи имеет особо важное значение в связи с тем, что оно позволяет выявить закономерности развития и осуществить прогнозирование этих явлений и процессов.

Каждый процесс и явление можно рассматривать с двух сторон. С первой стороны они испытывают влияние других явлений и процессов и выступают как результат этого влияния. С другой стороны каждое явление в свою очередь выступает как фактор, оказывающий влияние на другие явления и процессы. Поэтому признаки, которые испытывают влияние, называются результативными; признаки, которые оказывают влияние - факторные.

Результативные признаки обозначаются через Y, факторные через X. Поэтому в общем виде взаимосвязь между результатом и факторами можно записать формулой:

fy=(x1 ,x2 …)

следовательно Y является функцией от всех X.

Если на результат оказывает влияние первый фактор, то в этом случае изучается корреляция и регрессия, которые носят название парных; если на результат оказывает влияние несколько факторов, то изучается множественная корреляция и множественная регрессия.

Важной задачей статистики является разработка методики статистической оценки социальных явлений, которая осложняется тем, что многие социальные явления не имеют количественной оценки.

Но, исследуя явления в самых различных областях, статистика сталкивается с зависимостями, как между количественными, так и между качественными показателями, признаками. При этом задача статистики – обнаружить (выявить) такие зависимости и дать их количественную характеристику.

Как правило, анализ социальных явлений, их связей и зависимостей должен начинаться с построения графиков связей. В настоящее время используются графики, характеризующие связь социальных явлений (рис.1).


а)

б) в)

Рис.1 Графики, характеризующие связь социальных явлений

С помощью графика (рис.1.а) «цепь» изображаются связи между социальными признаками, которые одинаково существенны и значимы.

График (рис.1.б) «звезда» изображают зависимость социальных явлений, которые тяготеют к одному наиболее значимому. Исключение данного признака нарушает взаимосвязи между оставшимися признаками.

На графике (рис.1.в) «сетка» выделяется несколько значимых признаков, которые тесно зависимы друг от друга.

Виды и методы взаимосвязи.

Виды взаимосвязи

Статистика различает следующие виды взаимосвязи:

1. Функциональная и статистическая. Первый вид взаимосвязи имеет место тогда, когда первому значению фактора соответствует одно или несколько четко определенных значений результата. Например, S=Vt. Статистическая взаимосвязь имеет место тогда, если каждому значению фактора соответствует неопределенное множество значений результата. Статистика изучает только статистические связи.

2. Прямая и обратная. Прямая наблюдается в том случае, если движение фактора и результата направлены в одну сторону; обратная связь имеет место, если их движение противоположны.

3. Прямолинейная и криволинейная взаимосвязи. Прямолинейная выражается формулой уравнения прямой у = а + bx; криволинейная выражается уравнением параболы, гиперболы и других кривых y = x2 + bx + c.

В экономической практике не встречаются взаимосвязи, которые полностью можно описать при помощи формальных уравнений. Поэтому при характере взаимосвязи задачи статистики заключаются в следующем:

1) определить вид и характер взаимосвязи;

2) подобрать теоретическую функцию, которая наиболее точно описывает взаимосвязь фактора и результата. Это дает возможность прогнозировать результат показателя на основании прогноза факторов.

Методы взаимосвязи

Статистика изучает взаимосвязи при помощи системы методов, важнейшими среди которых являются:

1. Аналитические группировки, где факторный признак располагается по убыванию или возрастанию, а в соответствии с этим располагается и результативный признак. это дает возможность визуальным путем определить характер и тесноту взаимосвязи. Например, распределение по весу в зависимости от возраста.

Возраст Вес
0 3,5
1 5,7
2 9,2
3 13,4
4 17,7

2. Метод параллельных рядов. Строятся два ряда признаков, которые находятся в определенной взаимосвязи; затем визуально определяют характер и тесноту взаимосвязи. Например, данные о численности занятых в ВВП.

S занятых ВВП, млрд.руб
150 30
200 32
170 35
190 28
220 37

Для характеристики взаимосвязи факторный признак располагают в монотонно убывающем или возрастающем порядке, а показатели результата перемещаются в соответствии с факторным показателем.

S занятых ВВП, млрд.руб
150 30
170 35
190 28
200 32
220 37

3. Балансовый метод широко применяется в экономике. Основной показатель развития ВВП проходит в своем движении 3 стадии: производство, распределение и перераспределение, конечное использование.

Взаимосвязь между отдельными стадиями движения ВВП и отдельными компонентами ВВП осуществляется при помощи балансового метода. Его суть заключается в том, что величина ВВП на всех трех стадиях должна быть одинакова.

Основными методами изучения взаимосвязи социально-экономических явлений служат равные коэффициенты и корреляционно-регрессионный анализ.

4. Корреляционно-регрессионный анализ.Корреляционная связь – связь, проявляющаяся при достаточно большом числе наблюдений в виде определенной зависимости между средним значением результативного признака и признаками-факторами.

Изучение корреляционных связей сводится в основном к решению следующих задач:

- выявление наличия (или отсутствия) корреляционной связи между изучаемыми признаками. Эта задача может быть решена на основе параллельного сопоставления (сравнения) значений х и у у n единиц совокупности; с помощью группировок; построения и анализа специальных корреляционных таблиц; а также построения диаграмм рассеяния;

- измерение тесноты связи между двумя (и более) признаками с помощью специальных коэффициентов. Эта часть исследования называется корреляционный анализ;

- определение уравнения регрессии – математической модели, в которой среднее значение результативного признака у рассматривается как функция одной или нескольких переменных – факторных признаков. Эта часть исследования называется регрессионный анализ.

Задача корреляционного анализа – измерение тесноты связи между варьируемыми признаками и оценка факторов, оказывающих наибольшее влияние.

Задача регрессионного анализа – выбор типа модели (формы связи), устанавливающих степени влияния независимых переменных.

Связь признаков проявляется в их согласованной вариации, при этом одни признаки выступают как факторные, а другие – как результативные. Причинно-следственная связь факторных и результативных признаков характеризуется по степени:

·тесноты;

·направлению;

·аналитическому выражению.

4.1. Регрессионный анализ. Для оценки параметров уравнений регрессии наиболее часто используется метод наименьших квадратов (МНК), суть которого заключается в следующем требовании: искомые теоретические значения результативного признака

должны быть такими, при которых бы обеспечивалась минимальная сумма квадратов их отклонений от эмпирических (фактических) значений, т.е.

. (6.1)

При изучении связей показателей применяются различного вида уравнения прямолинейной и криволинейной связи. Так, при анализе прямолинейной зависимости применяется уравнение:

(6.2)

При криволинейной зависимости применяется ряд математических функций:

полулогарифмическая

(6.3)

показательная

(6.4)