Смекни!
smekni.com

Статистическая обработка данных. Статистика денежного обращения (стр. 2 из 7)

и
- это границы интервала, в который попадает случайная величина Х, имеющая
распределение вероятности
и заданной степени свободы V.

Для

=0,95

и V=59 находим по таблице:

Подставляя в неравенства

и
и произведя вычисления, получим интервальную оценку:

(59*0,809071) /83,2976<σ2< (59*0,809071) / 40,4817

0,573068<σ2<1,179179

Для

;
и V=59 находим по таблице:

,

Подставляя в неравенства

и
и произведя вычисления, получим интервальную оценку:

(59*0,809071) /91,9517<σ2< (59*0,809071) / 35,5346

0,519133<σ2<1,343343

Для интервальной оценки среднего квадратического отклонения имеем

При

σ = 0,899484

6,909064

0,757017<σ<1,085904

При

0,093802<σ< 0,368412

1.4 Результаты ранжирования выборочных данных вычисления моды и медианы

Используя исходные данные, записываем все заданные значения выборки в виде неубывающей последовательности значений случайной величины Х.


Таблица 1.4.1

Ранжированный ряд

1 14,4 11 15,15 21 15,61 31 15,88 41 16,4 51 17,02
2 14,44 12 15,15 22 15,64 32 15,93 42 16,4 52 17,12
3 14,85 13 15,22 23 15,68 33 15,96 43 16,52 53 17,26
4 15,01 14 15,22 24 15,7 34 16,05 44 16,6 54 17,36
5 15,02 15 15,26 25 15,78 35 16,26 45 16,62 55 17,38
6 15,03 16 15,28 26 15,8 36 16,29 46 16,67 56 17,39
7 15,04 17 15,31 27 15,81 37 16,3 47 16,75 57 17,7
8 15,07 18 15,38 28 15,81 38 16,31 48 16,84 58 17,78
9 15,1 19 15,41 29 15,85 39 16,38 49 16,91 59 17,94
10 15,12 20 15,59 30 15,86 40 16,38 50 16,91 60 18, 19

Интервал [14,40; 18, 19], содержащий все элементы выборки, разбиваем на частичные интервалы, используя при этом формулу Стерджесса для определения оптимальной длины и границ этих частичных интервалов.

По формуле Стерджесса длина частичного интервала равна:

= 0,548717225

Для удобства и простоты расчетов округляем полученный результат до сотых: h = 0,55

За начало первого интервала принимаем значение:

Хоmin - h/2 = 14,13

Х10 + h = 14,67

Х2 = Х1+h = 15,22

Х3 = Х2 + h = 15,77

Х4=16,32

Х5=16,87

Х6=17,42

Х7=17,97

Х8 = 18,52

Вычисление границ заканчивается как только выполняется неравенство

Хn >X max: Х8 = 18,52 > Хmax = 18, 19

По результатам вычислений составляем таблицу. В первой строке таблицы помещаем частичные интервалы, на второй строке - середины интервалов, в третьей строке записано количество элементов выборки, попавших в каждый интервал частоты, в четвертой строке записаны относительные частоты и в пятой строке записаны значения плотности относительных частот или значения выборочной, экспериментальной функции плотности (таблица 1.4.2).

Таблица 1.4.2

Значение выборочной функции и плотности

Интервалыh
[14,33;14,67) [14,67;15,22) [15,22;15,77) [15,77;16,32) [16,32,16,87) [16,87;17,42) [17,42;17,97) [17,97;18,52)
14,40 14,95 15,50 16,05 16,59 17,14 17,69 18,24
частотаni 2 12 10 14 10 8 3 1
0,033333333 0,2 0,166666667 0,233333333 0,166666667 0,133333333 0,05 0,016666667
0,060747744 0,364486462 0,303738718 0,425234206 0,303738718 0,242990975 0,091121615 0,030373872
60,747744 364,486462 303,738718 425,234206 303,738718 242,990975 91,121615 30,373872

По результатам вычислений функции плотности, представленной в таблице 4.1 можно сделать вывод, что мода имеет один локальный максимум в окрестностях точки х=0.34 с частотой n=20.

Оценку медианы находим, используя вариационный ряд

Т.к. N=2k, то k=N/2=30

Сравнение оценок
медианы = 15,87 и оценки математического ожидания 16,0515 показывает, что они отличаются на 1,14 %.

1.5 Параметрическая оценка функции плотности распределения

Исходя из гипотезы, что заданная выборка имеет нормальный закон распределения, найдём параметрическую оценку функции плотности, используя формулу для плотности распределения вероятности нормального закона

где

и
известны - они вычисляются по выборке.

=0,899484

=16,0515

Значения этой функции вычисляют для середин частичных интервалов вариационного ряда, т.е. при

. На практике для упрощения вычислений функции
, где i=1,2,…,k, пользуются таблицами значений функции плотности стандартной нормальной величины.

Для этого вычисляем значения

для i=1,2,…,k:

,

Затем по таблице находим значение