Для
Подставляя в неравенства
(59*0,809071) /83,2976<σ2< (59*0,809071) / 40,4817
0,573068<σ2<1,179179
Для
Подставляя в неравенства
(59*0,809071) /91,9517<σ2< (59*0,809071) / 35,5346
0,519133<σ2<1,343343
Для интервальной оценки среднего квадратического отклонения имеем
При
σ = 0,899484
0,757017<σ<1,085904
При
0,093802<σ< 0,368412
Используя исходные данные, записываем все заданные значения выборки в виде неубывающей последовательности значений случайной величины Х.
Таблица 1.4.1
Ранжированный ряд
1 | 14,4 | 11 | 15,15 | 21 | 15,61 | 31 | 15,88 | 41 | 16,4 | 51 | 17,02 |
2 | 14,44 | 12 | 15,15 | 22 | 15,64 | 32 | 15,93 | 42 | 16,4 | 52 | 17,12 |
3 | 14,85 | 13 | 15,22 | 23 | 15,68 | 33 | 15,96 | 43 | 16,52 | 53 | 17,26 |
4 | 15,01 | 14 | 15,22 | 24 | 15,7 | 34 | 16,05 | 44 | 16,6 | 54 | 17,36 |
5 | 15,02 | 15 | 15,26 | 25 | 15,78 | 35 | 16,26 | 45 | 16,62 | 55 | 17,38 |
6 | 15,03 | 16 | 15,28 | 26 | 15,8 | 36 | 16,29 | 46 | 16,67 | 56 | 17,39 |
7 | 15,04 | 17 | 15,31 | 27 | 15,81 | 37 | 16,3 | 47 | 16,75 | 57 | 17,7 |
8 | 15,07 | 18 | 15,38 | 28 | 15,81 | 38 | 16,31 | 48 | 16,84 | 58 | 17,78 |
9 | 15,1 | 19 | 15,41 | 29 | 15,85 | 39 | 16,38 | 49 | 16,91 | 59 | 17,94 |
10 | 15,12 | 20 | 15,59 | 30 | 15,86 | 40 | 16,38 | 50 | 16,91 | 60 | 18, 19 |
Интервал [14,40; 18, 19], содержащий все элементы выборки, разбиваем на частичные интервалы, используя при этом формулу Стерджесса для определения оптимальной длины и границ этих частичных интервалов.
По формуле Стерджесса длина частичного интервала равна:
Для удобства и простоты расчетов округляем полученный результат до сотых: h = 0,55
За начало первого интервала принимаем значение:
Хо=Хmin - h/2 = 14,13
Х1=Х0 + h = 14,67
Х2 = Х1+h = 15,22
Х3 = Х2 + h = 15,77
Х4=16,32
Х5=16,87
Х6=17,42
Х7=17,97
Х8 = 18,52
Вычисление границ заканчивается как только выполняется неравенство
Хn >X max: Х8 = 18,52 > Хmax = 18, 19
По результатам вычислений составляем таблицу. В первой строке таблицы помещаем частичные интервалы, на второй строке - середины интервалов, в третьей строке записано количество элементов выборки, попавших в каждый интервал частоты, в четвертой строке записаны относительные частоты и в пятой строке записаны значения плотности относительных частот или значения выборочной, экспериментальной функции плотности (таблица 1.4.2).
Таблица 1.4.2
Значение выборочной функции и плотности
Интервалыh | [14,33;14,67) | [14,67;15,22) | [15,22;15,77) | [15,77;16,32) | [16,32,16,87) | [16,87;17,42) | [17,42;17,97) | [17,97;18,52) |
| 14,40 | 14,95 | 15,50 | 16,05 | 16,59 | 17,14 | 17,69 | 18,24 |
частотаni | 2 | 12 | 10 | 14 | 10 | 8 | 3 | 1 |
| 0,033333333 | 0,2 | 0,166666667 | 0,233333333 | 0,166666667 | 0,133333333 | 0,05 | 0,016666667 |
| 0,060747744 | 0,364486462 | 0,303738718 | 0,425234206 | 0,303738718 | 0,242990975 | 0,091121615 | 0,030373872 |
| 60,747744 | 364,486462 | 303,738718 | 425,234206 | 303,738718 | 242,990975 | 91,121615 | 30,373872 |
По результатам вычислений функции плотности, представленной в таблице 4.1 можно сделать вывод, что мода имеет один локальный максимум в окрестностях точки х=0.34 с частотой n=20.
Оценку медианы находим, используя вариационный ряд
Т.к. N=2k, то k=N/2=30
Исходя из гипотезы, что заданная выборка имеет нормальный закон распределения, найдём параметрическую оценку функции плотности, используя формулу для плотности распределения вероятности нормального закона
где
Значения этой функции вычисляют для середин частичных интервалов вариационного ряда, т.е. при
Для этого вычисляем значения
Затем по таблице находим значение