Смекни!
smekni.com

Экономическое моделирование в банковской сфере (стр. 1 из 3)

Задание 1

В таблице приведены поквартальные данные о кредитах от коммерческого банка на жилищное строительство за 4 года (16 кварталов).

t 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Y (t) 43 54 64 41 45 58 71 43 49 62 74 45 54 66 79 48

Требуется:

1. Построить адаптивную мультипликативную модель Хольта-Уинтерса с учетом сезонного фактора, применив параметры сглаживания α1 = 0,3; α2 = 0,6; α3 = 0,3.

2. Оценить точность построенной модели с использованием средней ошибки аппроксимации;

3. Оценить адекватность построенной модели на основе исследования:

случайности остаточной компоненты по критерию пиков;

независимости уровней ряда остатков по d-критерию (в качестве критических использовать уровни d1 = 1,10 и d2 = 1,37) и по первому коэффициенту автокорреляции при критическом уровне значения r1 = 0,32;

нормальности распределения остаточной компоненты по R/S-критерию с критическими значениями от 3 до 4,21.

4. Построить точечный прогноз на 4 шага вперед, т.е. на 1 год.

5. Отобразить на графиках фактические, расчетные и прогнозные данные.

Решение:

1. Для оценки начальных значений а (0) и b (0) применим линейную модель к первым 8 значениям Y (t). Линейная модель имеет вид:


Метод наименьших квадратов дает возможность определить коэффициенты линейного уравнения по формулам:

Таблица 1

t Y (t) t-tср (t-tср) 2 Y-Yср (Y-Yср) х (t-tср)
1 43 -4 12 -9 33
2 54 -3 6 2 -4
3 64 -2 2 12 -17
4 41 -1 0 -11 6
5 45 1 0 -7 -4
6 58 2 2 6 8
7 71 3 6 19 47
8 43 4 12 -9 -33
36 419 0 42 0 36

Произведем расчет:

Получим линейное уравнение вида:

Для сопоставления фактических данных и рассчитанных по линейной модели значений составим таблицу.


Таблица 2. Сопоставление фактических и расчетных значений по линейной модели

t Y (t) Yp (t)
1 43 49,42
2 54 50,26
3 64 51,11
4 41 51,95
5 45 52,80
6 58 53,64
7 71 54,49
8 43 55,33

Коэффициент сезонности есть отношение фактического значения экономического показателя к значению, рассчитанному по линейной модели.

Поэтому в качестве оценки коэффициента сезонности I квартала F (-3) может служить отношение фактических и расчетных значений Y (t) I квартала первого года, равное

, и такое же отношение для I квартала второго года (т.е. за V квартал t=5)
.

Для окончательной, более точной, оценки этого коэффициента сезонности можно использовать среднее арифметическое значение этих двух величин.

Аналогично находим оценки коэффициентов сезонности для II, III и IV кварталов:


Построим адаптивную мультипликативную модель Хольта-Уинтерса (табл. 3) используя следующие формулы:

Таблица 3. Модель Хольта-Уинтерса

t Y (t) a (t) b (t) F (t) Yp (t) Абс. погр.,E (t) Отн. погр.,в%
0 48,57 0,85 0,8612 - -
1 43 49,57 0,89 0,8650 42,56 0,44 1,03
2 54 50,35 0,86 1,0746 54,39 -0,39 0,72
3 64 50,88 0,76 1,2658 65,43 -1,43 2,24
4 41 51,85 0,82 0,7877 40,44 0,56 1,37
5 45 52,48 0,76 0,8605 45,56 -0,56 1,24
6 58 53,46 0,83 1,0807 57,21 0,79 1,36
7 71 54,83 0,99 1,2833 68,73 2,27 3, 20
8 43 55,45 0,88 0,7803 43,97 -0,97 2,26
9 49 56,52 0,94 0,8644 48,47 0,53 1,07
10 62 57,43 0,93 1,0801 62,09 -0,09 0,15
11 74 58,15 0,87 1,2769 74,89 -0,89 1, 20
12 45 58,61 0,74 0,7728 46,05 -1,05 2,34
13 54 60,29 1,03 0,8832 51,31 2,69 4,99
14 66 61,25 1,01 1,0785 66,23 -0,23 0,34
15 79 62,14 0,97 1,2735 79,50 -0,50 0,63
16 48 62,81 0,88 0,7676 48,77 -0,77 1,61
25,75

Проверка качества модели.

Для того чтобы модель была качественной уровни, остаточного ряда E (t) (разности

между фактическими и расчетными значениями экономического показателя) должны удовлетворять определенным условиям (точности и адекватности). Для проверки выполнения этих условий составим таблицу 4.

Таблица 4. Промежуточные расчеты для оценки адекватности модели

t E (t) Точка поворота E (t) 2 [E (t) - E (t-1)] 2 E (t) xE (t-1)
1 0,44 - 0, 194 - -
2 -0,39 0 0,150 0,69 -0,17
3 -1,43 1 2,05 1,09 0,55
4 0,56 1 0,32 3,98 -0,81
5 -0,56 1 0,31 1,26 -0,32
6 0,79 0 0,62 1,81 -0,44
7 2,27 1 5,17 2,21 1,79
8 -0,97 1 0,95 10,54 -2,21
9 0,53 1 0,28 2,24 -0,51
10 -0,09 0 0,01 0,38 -0,05
11 -0,89 0 0,78 0,63 0,08
12 -1,05 1 1,11 0,03 0,93
13 2,69 1 7,26 14,03 -2,83
14 -0,23 0 0,05 8,52 -0,61
15 -0,50 0 0,25 0,07 0,11
16 -0,77 - 0,60 0,08 0,38
Сумма 0,41 8,00 20,09 47,57 -4,09

2. Проверка точности модели.

Будем считать, что условие точности выполнено, если относительная погрешность (абсолютное значение отклонения abs{E (t) }, поделенное на фактическое значение Y (t) и выраженное в процентах 100%* abs{E (t) }/ Y (t) в среднем не превышает 5%. Суммарное значение относительных погрешностей составляет 25,75. Средняя величина: 25,75/16=1,61%, значит, условие точности выполнено.

3. Проверка условия адекватности.

Для того чтобы модель была адекватна исследуемому процессу, ряд остатков E (t) должен обладать свойствами случайности, независимости последовательных уровней, нормальности распределения.

Проверка случайности уровней. Проверку случайности уровней остаточной компоненты (гр.2 табл.4) проводим на основе критерия поворотных точек. Для этого каждый уровень ряда Е

сравниваем с двумя соседними. Если он больше (либо меньше) обоих соседних уровней, то точка считается поворотной и в гр.3 табл.4 для этой строки ставится 1, в противном случае в гр.3 ставится 0. В первой и в последней строке гр.3 табл.4 ставится прочерк или иной знак, так как у этого уровня нет двух соседних уровней.

Общее число поворотных точек в нашем примере равно р=8.

Рассчитаем значение

:

Функция int означает, что от полученного значения берется только целая часть. При N = 16.

Так как количество поворотных точек р= 8 больше q=6, то условие случайности уровней ряда остатков выполнено.

Проверка независимости уровней ряда остатков (отсутствия автокорреляции). Проверку проводим двумя методами:

1) по d-критерию критерий Дарбина-Уотсона (критические уровни d1=1,10 и d2=1,37):

Так как полученное значение больше 2, то величину d уточним:


Условие выполнено (1,37<1,63<2), следовательно, уровни ряда Е (t) являются независимыми.

2) по первому коэффициенту автокорреляции r (1):