Расскажите о модели межотраслевого баланса
Межотраслевой баланс (МОБ, метод «затраты-выпуск») — экономико-математическая балансовая модель, характеризующая межотраслевые производственные взаимосвязи в экономике страны. Характеризует связи между выпуском продукции в одной отрасли и затратами, расходованием продукции всех участвующих отраслей, необходимым для обеспечения этого выпуска. Межотраслевой баланс составляется в денежной и натуральной формах.
Межотраслевой баланс представлен в виде системы линейных уравнений. Межотраслевой баланс (МОБ) представляет собой таблицу, в которой отражен процесс формирования и использования совокупного общественного продукта в отраслевом разрезе. Таблица показывает структуру затрат на производство каждого продукта и структуру его распределения в экономике. По столбцам отражается стоимостный состав валового выпуска отраслей экономики по элементам промежуточного потребления и добавленной стоимости. По строкам отражаются направления использования ресурсов каждой отрасли.
Таблица межотраслевого баланса разделена на 4 квадранта:
1. Первый квадрант (верхний левый) отражает межотраслевые материальные связи. Они характеризуют текущее производственное потребление.
2. Во втором разделе баланса (в таблице справа от первого) отражена структура конечного продукта.
3. В третьем (он расположен под первым) — формирование стоимости конечного продукт как суммы чистой продукции и амортизации (т.е. отражена стоимостная структура ВВП).
4. В четвертом квадранте показываются элементы перераспределения и конечного использования национального дохода
Сформулируйте свойства продуктивности и прибыльности модели Леонтьева?
Предположим: в рассматриваемой экономической системе выпускается п видов продуктов. В процессе производства своего вида продукта каждая отрасль нуждается в продукции других отраслей.
Введем обозначения: числа от 1 до n – номера отраслей, величина aij – объем продукции отрасли с номером i, израсходованной отраслью j в процессе производства единицы продукции. Число xj, равно общему объему продукции (ВВ) j-й отрасли за некоторый промежуток времени (например, плановый год), а значение yj, показывает объем продукции j-й отрасли, который был потреблен в непроизводственной сфере (объем КП), числа xij – объем продукции i-й отрасли расходуемый отраслью j в процессе производства балансовые уравнения имеют вид:
Σxij = xi – yi. i = 1, 2,..., n.
Матрица А = (aij) – матрица прямых затрат несет много информации о структуре межотраслевых связей. Сравнивая такие матрицы, составленные в достаточно разнесенные моменты времени, можно проследить направления изменения и развития технологии. Для осуществления объема xj ВВ продукции отрасли j необходимо и достаточно произвести затраты в объемах xjaij, i == 1, 2, ..., n продукции всех отраслей. Обозначим через X вектор ВВ, X = (x1, x2, …, xn). Тогда часть общего ВВ, израсходованная на производственные нужды в процессе производства определяется вектором
(Σa1j xj, Σa2j xj, . . ., Σanj xj). (3.2)
В матричных обозначениях вектор производственных затрат равен AХ. Тогда свободный остаток равный Y = X – AX будет использован на непроизводственные цели и накопление. Основной вопрос, возникающий в планировании производства на заданный период, однако, формулируется, как правило, наоборот: при заданном векторе Y КП требуется решить систему:
X – AX = Y, X ≥ 0. (3.3)
Условие неотрицательности вектора X создает определенные трудности при исследовании вопроса о существовании решения системы (3.3).
Приведенные выше уравнения вместе с изложенной интерпретацией матрицы A и векторов X, Y
называется моделью Леонтьева. В том случае когда решение системы (3.3) существует для любого неотрицательного вектора Y конечного спроса, говорят, что модель Леонтьева (и матрица А) продуктивна.
Особенность матриц A в модели Леонтьева состоит в том, что все элементы этой матрицы неотрицательны (A ≥ 0).
Рассмотрим балансовую модель, двойственную к модели Леонтьева (модель равновесных цен). Обозначим через p = (p1, p2, …, pn) – вектор цен, i-я координата которого равна цене единицы продукции i-й отрасли; тогда i-я отрасль получит доход, равный pixi.
Часть дохода эта отрасль потратит на закупку продукции у других отраслей. Так, для выпуска единицы продукции ей необходима продукция первой отрасли, второй отрасли и т.д. соответственно в объемах a1i, a2i, ..., ani. На покупку этой продукции ею будет затрачена сумма
a1ip1 + a2ip2 + . .. + anipn.
Для выпуска xi единицы продукции затраты составят
xi(a1ip1 + a2ip2 +...+ ani pn).
Оставшуюся часть дохода, называемую добавленной стоимостью, обозначим через Vi (эта часть дохода идет на выплату зарплаты и налогов, предпринимательскую прибыль и инвестиции).
Таким образом, имеет место следующие уравнения:
pi – (a1ip1 + a2ip2 + ... + ani pn) = vi, i = 1, 2, ..., n, (3.5)
где vi – норма добавленной стоимости (добавленная стоимость на единицу выпускаемой продукции). Найденные равенства могут быть записаны в матричной форме следующим образом:
p − AT p = v , (3.6)
где v – вектор норм добавленной стоимости, AT – матрица транспонированная для A. Полученная система уравнений является двойственной к системе уравнений модели Леонтьева.
Система (3.6) называется прибыльной, если она разрешима в неотрицательных p ≥ 0.
Продуктивность и прибыльность модели Леонтьева эквивалентны: из продуктивности следует прибыльность и наоборот.
Какой смысл имеют коэффициенты технологической матрицы А модели Леонтьева?
Технологическая матрица А (матрица Леонтьева) используется для моделирования экономик по методу «затраты – выпуск». Технологическая матрица А вводится как квадратная матрица коэффициентов затрат, названных «прямыми», на основе канонической формы системы линейных уравнений. Элементы матрицы А – aik показывают, сколько продукции, выпущенной i-ой системой, надо затратить для производства единицы продукции k-ой системы.
Технологические коэффициенты для производимых товаров можно представить квадратной технологической матрицей:
Подставим в матрицу технические коэффициенты:
В матричных обозначениях эта система уравнений принимает вид:
Матричную форму модели прямых затрат принято записывать в виде │1 - A│x = 0 , где А – квадратная матрица коэффициентов затрат aik размером I*I ; 1– единичная диагональная матрица; x – вектор затрат размером I. Локальные потоки затрат xik i-ой системы зависят от общих затрат xk k-ой системе xik=aikxk. Тогда общий объем прямых затрат i-ой системы равен сумме локальных затрат на приобретение продуктов у других систем
Метод межотраслевого анализа
Создатель теории межотраслевого анализа экономических систем - Василий Васильевич Леонтьев. По определению академика А. Г. Гранберга, сущность и сила межотраслевого анализа В. В. Леонтьева состоит в соединении теории функционирования экономических систем, метода математического моделирования, приемов систематизации и обработки экономической информации. Типичный продукт и вместе с тем предмет межотраслевого анализа – межотраслевой баланс экономики. Это и система показателей, характеризующих соотношения, структуру, связи экономики, и математическая модель, позволяющая не только изучать взаимовлияние множества экономических величин, но и конструировать возможные (альтернативные) состояния экономики.
Экономическая система, для исследования которой применяется метод межотраслевого анализа, может быть большой, как народное хозяйство страны или даже вся мировая экономика, или малой, такой как экономика региона или даже одного предприятия.
В любом случае подход в основном один и тот же. Структура производственного процесса в каждом секторе представляется определенным вектором структурных коэффициентов, который количественно характеризует связь между затратами этого сектора и результатами его деятельности. Взаимозависимость между секторами рассматриваемой экономики описывается системой линейных уравнений, выражающих балансы между совокупными затратами и агрегированным выпуском каждого продукта и услуг, производимых и используемых в течение одного или нескольких промежутков времени.
Соответственно, технологическая структура системы в целом может быть представлена матрицей технологических коэффициентов «затраты-выпуск» всех ее секторов. В то же время эта матрица содержит множество параметров, на которых основываются балансовые соотношения.
Таблица межотраслевого баланса
Таблица межотраслевого баланса описывает потоки товаров и услуг между всеми секторами народного хозяйства в течение фиксированного периода времени, например года.
Упрощенный пример такой таблицы, отражающий трех-секторную экономику приведен в табл. 1.