Смекни!
smekni.com

Развитие понятия числа (стр. 6 из 6)

В XV в. самаркандский ученый ал Каши ввел десятичные дроби. Это нововведение оставалось неизвестным европейским математикам.

Постепенно складывалось представление о бесконечности множества натуральных чисел. В 3веке до н.э. Архимед разработал систему обозначения чисел вплоть до такого громадного числа, как 10^8000.

Наряду с натуральными числами применяли дроби-числа, составленные из целого числа долей единицы. Множества натуральных чисел и дробей было достаточно, чтобы выразить результат любого измерения. Долгое время полагали, что результат измерения всегда выражается или в виде натурального числа, или в виде отношения двух таких чисел, т.е. дроби. Древнегреческий философ и математик Пифагор учил, что "элементы чисел являются элементами всех вещей и весь мир в целом является гармонией и числом".

К настоящему времени существует семь общепринятых уровней обобщения чисел: натуральные, рациональные, действительные, комплексные, векторные, матричные и трансфинитные числа. Отдельными учеными предлагается считать функции функциональными числами и расширить степень обобщения чисел до двенадцати уровней.

Современная наука встречается с величинами такой сложной природы, что для их изучения приходится изобретать все новые виды чисел.

При введении новых чисел большое значение имеют два обстоятельства:

- правила действий над ними должны быть полностью определены и не вели к противоречиям;

- новые системы чисел должны способствовать или решению новых задач, или усовершенствовать уже известные решения.

Список использованной литературы.

1. Андронов И.К. Математика действительных и комплексных чисел.– М.: Просвещение, 1975 г.

2. Андронов И.К., Окунев А.К. Арифметика рациональных чисел. – М.: Просвещение, 1971 г.

3. Архангельская В.М. Элементарная теория чисел: учебное пособие. Издательство саратовского университета, 1962 г.

4. Выгодский М.Я. Справочник по высшей математике. – М.:Физмат, 1963г.

5. Выгодский М.Я. Справочник по элементарной математике. - Москва: Государственное издательство физико-математической литературы, 1960 г. - 368 с.

6. Гейзер Г.И. История математики в школе. Пособие для учителей. - М.: Просвещение, 1981. - 239 с.

7. Клюйков С.Ф. Числа и познание мира. - Мариуполь: Полиграфический центр газеты «ИнформМеню». 1997г. - 112 с.

8. Крутецкий Р.О., Фадеев Д.К. Алгебра и арифметика комплексных чисел: Пособие для учителей средних школ. – Л.: Учпедгиз, ленинградское отделение, 1939 г.

9. Лисичкин В.Т., Соловейчик И.Л.Математика: Учеб.пособие для техникумов.

10. Рывкин А.А., Рывкин А.З., Хренов Л.С. Справочник по математике для техникумов. 3-е издание. - Москва, «Высшая школа», 1975г. - 554 с.