3.1.5. Нумерация и дроби в Древней Греции.
Вплоть до VI века до н. э. греческая математика ничем выдающимся не прославилась. Были, как обычно, освоены счёт и измерение. Греческая нумерация (запись чисел), как позже римская, была аддитивной, то есть числовые значения цифр складывались. Первый её вариант (аттическая, или геродианова) содержали буквенные значки для 1, 5, 10, 50, 100 и 1000. Соответственно была устроена и счётная доска (абак) с камешками. Кстати, термин калькуляция (вычисление) происходит от calculus — камешек. Особый дырявый камешек обозначал нуль.
Позднее вместо аттической нумерации была принята алфавитная — первые 9 букв греческого алфавита обозначали цифры от 1 до 9, следующие 9 букв — десятки, остальные — сотни. Чтобы не спутать числа и буквы, над числами рисовали чёрточку. Числа, большие 1000, записывали позиционно, помечая дополнительные разряды специальным штрихом (внизу слева). Специальные пометки позволяли изображать и числа, большие 10000.
В VI веке до н. э. «греческое чудо» начинается: появляются сразу две научные школы — ионийцы (Фалес Милетский, Анаксимен, Анаксимандр) и пифагорейцы. О достижениях ранних греческих математиков мы знаем в основном по комментариям позднейших авторов, преимущественно Евклида, Платона и Аристотеля. [1]
Фалес, богатый купец, во время торговых поездок, видимо, хорошо изучил вавилонскую математику и астрономию. Ионийцы дали первые доказательства геометрических теорем.
Однако главная роль в деле создания античной математики принадлежит пифагорейцам.
В Древней Греции арифметику – учение об общих свойствах чисел – отделяли от логистики – искусства исчисления. Греки считали, что дроби можно использовать только в логистике. Здесь мы впервые встречаемся с общим понятием дроби вида m/n. Таким образом, можно считать, что впервые область натуральных чисел расширилась до области дополнительных рациональных чисел в Древней Греции не позднее V столетия до н. э. Греки свободно оперировали всеми арифметическими действиями с дробями, но числами их не признавали.
Греки употребляли наряду с единичными, «египетскими» дробями и общие обыкновенные дроби. Среди разных записей употреблялась и такая: сверху знаменатель, под ним – числитель дроби. [2]
3.1.6. Нумерация и дроби на Руси.
Наши предки - славяне пользовались десятичной алфавитной славянской нумерацией.
Над буквами и числами ставился особый знак, названный – титло ~.
Для обозначения тысячи применялся знак
, который приставлялся слева от букв.Интересно отметить, что хотя в славянской нумерации запись числа шла слева направо, от высших единиц к низшим, но для чисел от 11 до 19 делалось исключение: сначала писали единицы, а затем знак для 10.
С помощью древнеславянской нумерации можно записать любое число от 1 до 999.
Дроби в Древней Руси называли долями, позднее ломаными числами. Так у дробей с числителем 1 были свои названия.1\2- половина, полтина. 1\3 - треть. 1\4 - четь. 1\6 - полтреть. 1\8- полчеть. 1\12- полполтреть.
1\10- десятина (1,09 га - русская мера земельной площади). Славянская нумерация употреблялась в России до XVI века. И только при Петре I стала вводится десятеричная система счисления, которая и сохранилась до наших дней. В 1903 г вышла в свет “Арифметика” Л. Ф. Магницкого. В которой в первой части изложены действия с целыми числами, во второй - с ломаными, т.е. дробями.
До наших дней дошло очень мало старинных документов – не более трёх посвящённых арифметике и геометрии; значительно больше сборников включали в себя и естественнонаучные сведения; также известны и две общеобразовательные энциклопедии – "Азбуковники".
Интересно, что математическая терминология рукописей существенно отличалась от нынешней [1].
Слагаемые назывались перечнями, их сумма – исподним большим перечнем, уменьшаемое – заёмным перечнем, вычитаемое – платёжным перечнем, разность – остатком, делимое – большим перечнем, делитель – деловым перечнем, частное – жеребейным перечнем, остаток – остаточной долей, а сомножители и их произведение специальных наименований не имели.
3.1.7. Десятичные дроби.
Предшественниками десятичных дробей являлись шестидесятеричные дроби древних вавилонян. Некоторые элементы десятичной дроби встречаются в трудах многих ученых Европы в 12, 13, 14 веках.
В Древнем Китае уже пользовались десятичной системой мер, обозначали дробь словами, используя меры длины чи, цуни, доли, порядковые, шерстинки, тончайшие, паутинки. Дробь вида 2,135436 выглядела так: 2 чи, 1 цунь, 3 доли, 5 порядковых, 4 шерстинки, 3 тончайших, 6 паутинок. Так записывались дроби на протяжении двух веков, а в V веке китайский ученый Цзю-Чун-Чжи принял за единицу не чи, а чжан = 10 чи, тогда эта дробь выглядела так: 2 чжана, 1 чи, 3 цуня, 5 долей, 4 порядковых, 3 шерстинки, 6 тончайших, 0 паутинок.
Десятичную дробь с помощью цифр и определенных знаков попытался записать арабский математик ал-Уклисиди в X веке. Свои мысли по этому поводу он выразил в "Книге разделов об индийской арифметике".
Примерно в это же время математики Европы также пытались найти удобную запись десятичной дроби. В книге "Математический канон" французского математика Ф. Виета (1540-1603) десятичная дробь записана так 2 135436 - дробная часть и подчеркивалась и записывалась выше строки целой части числа.
В 1585 г., независимо от ал-Каши, фламандский ученый Симон Стевин (1548-1620) сделал важное открытие, о чем написал в своей книге "Десятая" (на французском языке "De Thiende, La Disme"). Эта маленькая работа (всего 7 страниц) содержала объяснение записи и правил действий с десятичными дробями. Он писал цифры дробного числа в одну строку с цифрами целого числа, при этом нумеруя их. Например, число 12,761 записывалось так:
1207À6Á1Â12
или число 0,3752 записывалось так:
3-7-5-2-.
Именно Стевина и считают изобретателем десятичных дробей.
Запятая в записи дробей впервые встречается в 1592г., а в 1617г. шотландский математик Джон Непер предложил отделять десятичные знаки от целого числа либо запятой, либо точкой.
Современную запись, т.е. отделение целой части запятой, предложил Кеплер (1571) - (1630 гг.).
В странах, где говорят по-английски (Англия, США, Канада и др.), и сейчас вместо запятой пишут точку, например: 2.3 и читают: два точка три.
3.2. Отрицательные числа.
Древний Египет, Вавилон и Древняя Греция не использовали отрицательных чисел, а если получались отрицательные корни уравнений (при вычитании), они отвергались как невозможные.
Впервые отрицательные числа были узаконены в Китае в III веке, но использовались лишь для исключительных случаев, так как считались, в общем, бесмыссленными. Чуть позднее отрицательные числа стали использоваться в Индии для обозначения долгов, или признавались как промежуточный этап, полезный для вычисления окончательного, положительного результата, но западнее они не прижились.
Знаменитый Диофант Александрийский утверждал, что уравнение 4x+20=0 – абсурдно. В Европе отрицательные числа появились благодаря Леонардо Пизанскому (Фибоначчи), который тоже ввёл его для решения финансовых задач с долгами - в 1202 году он впервые использовал отрицательные числа для подсчёта своих убытков.
Правда, умножение и деление для отрицательных чисел тогда ещё не были определены.
Диофант в III веке уже знал правило знаков и умел умножать отрицательные числа. Однако и он рассматривал их лишь как временные значения.
Полезность и законность отрицательных чисел утверждались постепенно. Индийский математики Брахмагупта (VII век) уже рассматривал их наравне с положительными. В Европе признание наступило на тысячу лет позже, да и то долгое время отрицательные числа называли «ложными», «мнимыми» или «абсурдными». Даже Паскаль считал, что 0 − 4 = 0, так как ничто не может быть меньше, чем ничто. Бомбелли и Жирар, напротив, считали отрицательные числа вполне допустимыми и полезными, в частности, для обозначения недостачи чего-либо. Отголоском тех времён является то обстоятельство, что в современной арифметике операция вычитания и знак отрицательных чисел обозначаются одним и тем же символом (минус), хотя алгебраически это совершенно разные понятия.
В XVII веке, с появлением аналитической геометрии, отрицательные числа получили наглядное геометрическое представление на числовой оси. С этого момента наступает их полное равноправие. Тем не менее теория отрицательных чисел долго находилась в стадии становления. Оживлённо обсуждалась, например, странная пропорция 1:(-1) = (-1):1 — в ней первый член слева больше второго, а справа — наоборот, и получается, что большее равно меньшему («парадокс Арно»). Непонятно было также, какой смысл имеет умножение отрицательных чисел, и почему произведение отрицательных положительно; на эту тему проходили жаркие дискуссии.
Полная и вполне строгая теория отрицательных чисел была создана только в XIX веке (Уильям Гамильтон и Герман Грассман).
3.2.1. Отрицательные числа в Древней Азии.
Положительные количества в китайской математике называли “чен”, отрицательные – “фу”; их изображали разными цветами: “чен” - красным, “фу” - черным. Такой способ изображения использовался в Китае до середины XII столетия, пока Ли Е не предложил более удобное обозначение отрицательных чисел – цифры, которые изображали отрицательные числа, перечеркивали черточкой наискось справа налево.