Смекни!
smekni.com

Розвиток і вдосконалення льотної промисловості України (стр. 12 из 18)

(4.2)

де

– інерційна постійна УГЖ

– момент опору УГЖ.

Розділяючи в (4.2) змінні, отримаємо:

(4.3)

Інтегруючи ліву частину рівняння (4.3) від

до
, а праву частину від 0 до tп, отримаємо:

. (4.4)

З (4.4) легко знайти зв'язок між величинами

і tn:

(4.5)

В розрядному циклі величина

не може знизитися до допустимого значення
визначуваного з умови допустимого перевантаження дизеля. Перевантаження дизеля при зниженні частоти можна визначити, знаючи статизм його регулярної характеристики. Для самого небезпечного випадку, коли перехід з основного джерела живлення на резервне здійснюється при номінальному навантаженні, величина перевантаження дизеля Рпg, визначається його регулярною характеристикою і рівна:

(4.6)

де Рпg– перевантаження дизеля %;

s– статизм регулярної характеристики дизеля %.

Очевидно, що при розробці УГЖ потрібно прагнути зменшення часу tn, протягом якого здійснюється переклад системи електропостачання з основного джерела живлення на резервне.

Для цієї мети необхідний, по-перше, зменшувати час визначення факту відмови основного джерела і, по-друге, зменшувати час пуску дизеля.

4.3 Установки гарантованого живлення з електромашинними перетворювачами і електрохімічними накопичувачами енергії

На рис. 4.4 приведені найпоширеніші схеми УГЖ з електромашинними перетворювачами і електрохімічними накопичувачам енергії: схема двомашинного агрегату (рис. 4.4, а) і схема трьохмашинного агрегату (рис. 4.4, б).

У двомашинного агрегату (рис. 1.4, а), що є перетворювач напруги постійного струму в напругу змінного струму, застосований двигун постійного струму і генератор змінного струму. Як накопичувач енергії використовується акумуляторна батарея працююча в режимі підпору і включена паралельно випрямлячу В1, що живить двигун постійного струму М. Режим підпору забезпечується тим, що, по-перше, напруга на виході випрямляча вибирається більшим, ніж напруга на виході акумуляторної батареї GB і, по-друге, між акумуляторною батареєю і випрямлячем включений вентильний елемент, роль якого виконує діод VD. За наявності напруги зовнішньої мережа живлення двигуна постійного струму M здійснюється від випрямляча В1. Акумуляторна батарея знаходиться в режимі заряду, забезпечуваного зарядним устроєм (ЗУ). Двигун постійного струму М розташований на одному валу з генератором G, який за допомогою вимикача QF1 підключений до шин гарантованого живлення (ШГЖ).

В аварійному режимі роботи при відключенні основного джерела протягом часу виходу на необхідний режим резервного джерела живлення двигуна постійного струму здійснюється від акумуляторної батареї. Електропостачання електроприймачів, підключених до ШГЖ, здійснюється без розриву синусоїди живлячої напруги на виході генератора G. Після включення резервного джерела електромашинний перетворювач перекладається знов на живлення від випрямляча.

У трьохмашинного агрегату (рис. 4.4, б) в нормальному режимі роботи генератор G приводиться в обертання АД, який одержує живлення від основного джерела. В аварійному режимі роботи до включення резервного джерела синхронний генератор перекладається на привід від двигуна постійного струму, який вимикачем QF2 підключений до акумуляторної батареї GB. Заряд акумуляторної батарея здійснюється зарядним устрій (ЗУ) за наявності напруги на шинах розподільного пристрою (РУ) Первинний пуск трьохмашинного агрегату здійснюється двигуном постійного струму. Це дозволяє уникнути перевантаження УГЖ, яке може бути викликаний великими струмами, характерними для пуску АД.

УГЖ на електромашинних перетворювачах з електрохімічними накопичувачами енергії дозволяють забезпечити безперебійність електропостачання електроприймачів без розриву синусоїди живлячої напруги при переведення живлення з основного джерела на резервне, викликаному аварією або відмовою основного джерела. Для цих УГЖ, крім того, властиво висока якість кривої напруги на ШГЖ і ослаблення впливу коливань і відхилень напруги і частоти зовнішньої мережа на роботу електроприймачів, підключених до ШГЖ. Основними недоліками даних схем УГЖ є:

- низький коефіцієнт корисної дії, обумовлений двократним перетворенням енергії в електромашинних перетворювачах;

- низька надійність установки, визначувана найслабкішою ланкою, якою є двигун постійного струму;

- малий моторесурс (до 10 тис. годин);

- обмежена швидкодія;

- шум, наявність вібрацій, необхідність установки могутніх фундаментів;

- великі маса і габарити акумуляторних батарей;

- складність стабілізації вихідної напруги, що викликається зміною в широких межах напруги акумуляторної батареї при її розряді;

- складність експлуатації, що викликається наявністю щеточно-колек-торного вузла в двигунах постійного струму і низкою ступенем автоматизації, визначуваної специфічними особливостями роботи і зберігання акумуляторних батарей;

- низька точність підтримки частоти напруги, що виробляється, на ШГЖ, властива УГЖ з трьохмашинним агрегатом.

Стабілізація частоти з високою точністю може бути досягнутий, якщо в УГЖ з трьохмашинним або двомашинним агрегатом замість синхронного генератора застосувати МДП-генератор (машину подвійного живлення). МДП-генератор є асинхронним генератором з фазним ротором, збуджуваним струмом частоти ковзання. При цьому МДП-генератор дозволяє отримати стабільну частоту в широкому діапазоні кутових частот обертання. Обмотка збудження такого генератора може харчуватися від спеціального синхронного збудника або безпосередньо від ШГЖ. В останньому випадку говорять, що має місце режим самозбудження. Як в схемах із збудником, так і в схемах без нього роторна обмотка підключена через перетворювач частоти, службовець для зміни частоти напруги, що подається на обмотку збудження.

4.4 Установки гарантованого живлення на статичних перетворювачах і електрохімічних накопичувачах енергії

В даний час переважне поширення отримали серед УГЖ на статичних перетворювачах УГЖ змінного струму і УГЖ постійного струму. На рис. 4.5 приведені основні структурні схеми УГЖ змінного струму на статичних перетворювачах:

- без ланки постійного струму (рис. 4.5, а);

- з ланкою постійного струму (рис. 4.5, б);

- з ланкою постійного струму і навантаженим резервом (рис. 4.5, в).

В схемі (рис. 4.5, а) електроприймачі УГЖ. в нормальному режимі одержують живлення від основного джерела через стабілізуюче трансформатор (СТС), акумуляторна батарея знаходиться в режимі заряду (QF3 включений), а інвертування (I) знаходиться в режимі холостого ходу (QF4 вимкнений). При аварії в ланцюгах основного джерела до виходу на режим резервного джерела електропостачання ШГЖ здійснюється інвертуванням (I) живленим акумуляторною батареєю GВ. Інвертування включається вимикачем QF4. В схемі має місце перерва в електропостачанні на час включення вимикача QF4.

На рис. 4,5, б представлена схема УГЖ, що забезпечує безперебійне електропостачання електроприймачів, підключених до ШГЖ. В схемі передбачений резервний канал, утворений зв'язком розподільного пристрою і ШГЖ за допомогою стабілізатора напруги на базі трансформатора СТС. За наявності напруги на введенні основного джерела електроприймачі ШГЖ одержують електроенергію від РУ через СТС або від РУ через випрямляч (В)і інвертування (I). При паралельній роботі СТС і інвертування необхідно передбачити синхронізацію напруг інвертування і мережа.


На час переведення електропостачання з основного джерела, на резервний живлення електроприймачів ШГЖ здійснюється від акумуляторної батареї GВ, яка через діод VD підключена до інвертування I). Акумуляторна батарея GВ працює в режимі підпору (за наявності напруги на шинах РУ діод VD закритий), для чого напруга на виході випрямляча повинна перевищувати напругу акумуляторної батареї. Заряд акумуляторної батареї проводиться від окремого зарядного устрою (ЗУ) або від випрямляча В ланки постійного струму.

Підвищення надійності ШГЖ досягається застосуванням двох незалежних ліній живлення так, як це показано на рис. 4.5, в. Кожна з цих ліній в змозі забезпечити нормальну роботу всіх електроприймачів, підключених до ШГЖ, що дозволяє отримати 100 резервування.