Перевагою схеми (рис. 4.2, а) є ослаблення впливу коливань напруги і частоти, що має місце в колі основного джерела, на роботу приймачів електроенергії, підключених до ШГЖ. Ця схема, крім того, дозволяє отримати число фаз, форму кривої струму, величину напруги, величину частоти і інші параметри, відмінні від відповідних параметрів основного джерела.
Разом з тим, схемі, властиві серйозні недоліки:
- низький коефіцієнт корисної дії (постійно працює ЕМП і мають місце втрати енергії в двигуні і генераторі);
- частота напруги, що знімається на ШГЖ, навіть в нормальних режимах роботи нижче синхронній (частота обертання АД менше на величину ковзання частоти основного і резервного джерела).
На рис. 4.2, б і 4.2, в представлені схеми дизельінерційних УГЖ. УГЖ (рис. 4.2, б) складається з синхронного генератора G асинхронного електродвигуна М, маховика, муфти зчеплення МЗ і дизеля, зібраного на загальній рамі. В нормальному режимі роботи автоматичні вимикачі QF1 і QF2 включені і АД обертає інерційний маховик і генератор G. Електроприймачі, приєднані до ШГЖ, одержують живлення від генератора G. Муфта зчеплення (МЗ) відключена і роз'єднує дизель і електромашинний перетворювач.
При відключенні основного джерела вимикається вимикач запускається дизель і включається муфта зчеплення. На час запуску і прийому навантаження дизелем шини гарантованого живлення продовжують одержувати електричну енергію від генератора, що приводиться в обертання інерційним маховиком.
В установці гарантованого живлення (рис. 4.2, в) застосована обернена електрична машина (ОЕМ), підключена за допомогою автоматичного вимикача QF2 паралельно мережному введенню (введенню основного джерела, включеному вимикачем QF1). Електропостачання приймачів електричної енергії, підключених до ШГЖ, в нормальному режимі роботи здійснюється від основного джерела. При цьому оборотна електрична машина працює в руховому режимі, обертаючи маховик. Муфта зчеплення (МЗ) вимкнена, і вал дизеля від'єднаний від валу генератора.
При відключенні основного джерела оборотна електрична машина переходить в генераторний режим роботи, включається муфта зчеплення, приєднуючи вал дизеля до валу маховика, який при пуску дизеля виконує роль стартера, що обертається. Одночасно включається подача палива в дизель, який стає приводним механізмом УГЖ, і відключається автоматичний вимикач QF1 припиняючи віддачу електроенергії від УГЖ в коло основного джерела. Залежно від вимог до САЕ по надійності електропостачання в схемах, приведених на рис. 4.2, можуть використовуватися дві або більше число установок гарантованого живлення.
Порівняльна оцінка УГЖ, виконаних по схемах рис. 4.2, б і рис. 4.2, в, дозволяє визначити їх достоїнства і недоліки.
Так, основною перевагою схеми (рис. 4.2, б) є відсутність гальванічного зв'язку між зовнішньою мережею і генератором, підключеним до шин гарантованого живлення. В схемі немає реверсу, і при зникненні напруги зовнішньої мережа інерційний маховик не затрачує енергію на живлення зовнішньої мережа (можливого короткого замикання) до моменту виключення вимикача QF1. Крім того, на роботі відповідальних електроприймачів практично не позначаються відхилення і коливання напруги і частоти, що мають місце в зовнішній мережа. Схема проста в управлінні, оскільки в ній не потрібна синхронізація генератора і зовнішньої мережа. Перевагою схеми є і можливість розкручування маховика з допомогою АД, що харчується від зовнішньої мережа.
Недоліками схеми (рис. 4.2, б) є низька надійність електропостачання і низький коефіцієнт корисної дії процесу перетворення енергії. Низька надійність електропостачання визначається тим, що УГЖ одержують електричну енергію за допомогою двох послідовно включених електричних машин, вихід з ладу яких або будь-який з них навіть за наявності напруги зовнішньої мережа або справному стані дизеля приводить до порушення електропостачання електроприймачів, підключених до ШГЖ.
Низький коефіцієнт корисної дії схеми (рис. 4.2, б) зв'язаний з тим, що агрегати, що здійснюють перетворення енергії, мають істотні втрати, що становлять величину, рівну 20% Рном, при живленні від зовнішньої мережа. В автономному режимі роботи коефіцієнт корисної дії системи ще нижче. Крім того, схемі (рис. 4.2, б) властиві великі габарити і маса, що у ряді випадків є вирішальною перешкодою, особливо при великій потужності агрегатів.
УГЖ, виконана по схемі (рис. 4.2, в), має наступні переваги в порівнянні з УГЖ, виконаної по схемі (рис. 4.2, б):
- високу надійність електропостачання;
- високий коефіцієнт корисної дії (втрати енергії при живленні від зовнішньої мережа не перевищує величину, рівну 7% Рном, а у разі автономної роботи коефіцієнт корисної дії установки практично рівний коефіцієнту корисної дії автономного дизель-генератора);
відносно невеликі габарити і маса, обумовлена застосуванням тільки однієї електричної машини;
- просту схему електричних з'єднань і автоматичного управління.
Разом з тим, схемі (рис. 4.2, в) властиві і недоліки:
- вплив відхилень і коливань напруги і частоти зовнішньої мережа на роботу електроприймачів, включених на шини гарантованого живлення;
- втрати кінетичної енергії маховика на живлення можливого короткого замикання в колі основного джерела до моменту виключення автоматичного вимикача QF1;
- необхідність в проведенні синхронізації при пуску УГЖ і при зворотному переході живлення на основне джерело (при пуску розкручування маховика здійснюється дизелем, і включення можливо тільки по команді синхронізатора).
Для обох схем (рис. 4.2, б і рис. 4.2, в) певні складнощі пов'язані з наявністю муфти зчеплення.
Деякі з перерахованих вище недоліків можливо усунути, застосовуючи комбіновану схему УГЖ, представлену на рис. 4.3.
В комбінованій схемі окрім резервного дизель-генератора передбачений двигун-генератор на базі асинхронного двигуна М і синхронного генератора G2 з інерційним маховиком. АД М вимикачем QF3 підключене паралельно введенню основного джерела (ОД). Синхроний генератор G2 підключений вимикачем QF4 до ШГЖ.
Кожний з агрегатів в схемі (рис. 4.3) володіє на перший погляд меншими габаритами і масою в порівнянні з такими ж агрегатами в схемах (рис. 4.2, б і рис. 4.2, в).Проте ця перевага по суті зводиться до нуля у зв'язку з тим, що час запуску резервного дизель-генератора практично на порядок вище за час пуску дизеля в УГЖ (рис. 4.2, в). У зв'язку з цим необхідно значно збільшувати момент інерції, а значить і масу маховика, що у свою чергу вимагає збільшення потужності асинхронного двигуна М двигун-генератора, а значить і збільшення потужності резервного дизель-генератора. Крім того, система, виконана і схемі (рис. 4.3), має уявну високу надійність електропостачання. Фактична надійність електропостачання електроприймачів при живленні від основного джерела визначається надійністю двох послідовно включених електричних машин, а при живленні від дизель-генератора – надійністю трьох послідовно включених електричних машин.
Втрати енергії в комбінованій схемі при живленні електроприймачів від основного джерела досягають 25% Рном, споживачів УГЖ, а при живленні від дизель-генератора через двигатэль-генератор коефіцієнт корисної дії системи на 30 % нижче, ніж у системи, виконаної по схемі (рис. 4.2, в). Це у свою чергу приводить до збільшення потужності резервного дизель-генератора.
При визначенні моменту інерції маховика необхідно враховувати величину допустимого зниження частоти, потужність навантаження, частоту обертання маховика, час, протягом якого резервне джерело може прийняти навантаження, і коефіцієнт корисної дії перетворювача енергії. У випадку, якщо необхідна величина кінетичної енергії маховика Wк відома, масу маховика mм, радіус якого рівний Rм, для заданого діапазону частот обертання в розрядному циклі
можна визначити по формулі:де
– коефіцієнт корисної дії перетворювача енергії в розрядному циклі; , – максимальна і мінімальна частоти обертання маховика в розрядному циклі.Необхідну величину кінетичної енергії маховика Wк можна визначити, знаючи потужність навантаження Рн і час tп, протягом якого здійснюється переклад електропостачання з основного джерела живлення на резервне. Для дизель-генераторних УГЖ з інерційними маховиками час tп, з одного боку, визначається часом, протягом якого встановлюється, що основне джерело відмовило, і часом пуску дизеля. З другого боку, величина tп найбезпосереднішим чином впливає на величину мінімальної частоти обертання маховика в розрядному циклі
. Виходячи з диференціального рівняння руху валу УГЖ і рахуючи навантаження системи Рн незмінної, можна для розрядного циклу роботи маховика, записати наступний вираз: