Наука как специфическая сфера интеллектуальной деятельности характеризуется рядом классификационных признаков по направлениям или группам научных дисциплин. В зависимости от предмета научного познания и методов исследования наука подразделяется на три группы или подсистемы: естественные, общественные и технические науки. Границы между этими подсистемами в определенной мере условны – некоторые отрасли научных знаний находятся на стыке этих наук: бионика, техническая эстетика, экономическая география и т. д. Наряду с продолжающимся процессом дифференциации научных знаний и выделением новых научных дисциплин, проходит процесс междисциплинарных комплексных исследований, охватывающий целые комплексы различных научных дисциплин, находящихся в определенных взаимосвязях и взаимозависимостях. Примером тому могут служить исследования в области экологии и охраны окружающей среды, затрагивающие различные области научных знаний, включая биологию, комплекс наук о земле, технические науки, медицину, экономику, математику, юриспруденцию, международные отношения и т. д.
По отношению к непосредственной человеческой деятельности наука подразделяется на фундаментальную и прикладную. Фундаментальная наука исследует общие законы развития природы, общества, человеческого мышления. Прикладная наука стремится к практическому использованию результатов фундаментальных научных открытий для решения конкретных практических задач, возникающих в процессе развития общества. Если фундаментальная наука занимается разработкой проблем, имеющих в основном познавательное значение, то прикладная наука занимается преимущественно решением практических проблем, таких, как внедрение наукоемких высоких технологий, конкурентоспособных на мировом уровне. Разумеется, грани между фундаментальной и прикладной науками в определенной мере условны: в процессе выполнения исследований в области фундаментальной науки могут быть получены результаты, имеющие исключительно важное прикладное значение; в свою очередь, прикладные исследования могут завершиться научными открытиями, имеющими фундаментальное теоретическое значение. Но такие случаи являются исключением из правила и не отрицают важности и необходимости разграничения фундаментальных и прикладных наук [61, с. 204-205].
Открывая объективные законы природы, наука создает реальные возможности для их практического использования обществом. Однако вплоть до середины XIX века применение достижений науки носило элементарный характер: использовались отдельные научные изобретения и открытия, совершенствовались технологические процессы в некоторых отраслях промышленности. С возникновением таких технических дисциплин, как технология металлов, сопротивление материалов, теория механизмов и машин, электротехника и других, использование достижений как фундаментальных, так и прикладных науки приобрело более целенаправленный характер. Наука, особенно прикладная, стала теснее связываться с производством, лучше и оперативнее реагировать на его запросы. Однако только во второй половине XX века ее достижения стали планомерно и систематически применяться в технологии и организации производства. О науке как непосредственной производительной силе впервые заговорили в период научно-технической революции XX века, когда новейшие достижения науки стали использоваться для замены ручного труда машинным, механизации и автоматизации трудоемких процессов в технологии производства, применения компьютеров и другой информационной техники в разных отраслях народного хозяйства. Продвижению новейших достижений науки в производство во многом способствовало создание специальных объединений по научным исследованиям и конструкторским разработкам (НИОКР), перед которыми была поставлена задача по доведению научных проектов для их непосредственного использования в производстве. Установление такого промежуточного звена между теоретическими и прикладными науками и их воплощением в конкретных конструкторских разработках содействовало сближению науки с производством и превращению ее в реальную производительную силу.
На возрастающую роль науки в развитии общественного производства неоднократно указывали К. Маркс и Ф. Энгельс. Они отмечали, что в определенных исторических условиях наука превращается в самостоятельный фактор материального производства. Будучи «всеобщим общественным знанием», «накопленным обществом», наука становится общественной производительной силой, когда она включается в процесс решения задач материального производства [37, с.215- 221].
Исходные пункты этого процесса нужно искать в изменении технико-экономических и социальных факторов общественного развития. К ним прежде всего относятся рост размеров промышленных предприятий, углубление дифференциации и возрастание обобществления труда, переход к машинному способу изготовления изделий. К. Маркс отмечал, что рост размеров промышленных предприятий служит исходным пунктом для более широкой организации совместного труда, для более широкого развития его материальных движущих сил, т. е. для прогрессирующего превращения разрозненных и рутинных процессов производства в общественно комбинированные и научно направляемые процессы производства [35, с.642].
Технический базис крупной промышленности развивался в результате использования машин, разработки химических процессов, введения прогрессивных методов обработки и т. д. В начале развития отдельные улучшения достигались в основном эмпирическим путем. Со временем эмпирические сведения перестают удовлетворять быстро возрастающие потребности производства. Это противоречие могло быть разрешено только с помощью науки. Со времени формирования капиталистического машинно-фабричного производства применение научных знаний для совершенствования технического базиса стало постоянным фактором развития крупной промышленности.
Превращение науки в непосредственную производительную силу в условиях крупного машинного производства – процесс закономерный. В машинно-фабричном производстве организация всего производственного процесса свободна от жесткой ориентации на возможности работника. Основу функционирования этого производства составляет система машин, осуществляющая производственный процесс, разделенный на составные части по объективным признакам. Это дает возможность разрешить проблему выполнения каждой части и всего процесса в целом, применяя научные знания.
Таким образом, на определенном этапе развития материальное производство становится тесно связанным с достижениями науки и использованием ее результатов в практической жизни людей. Техническим основанием, на котором родилась и развивалась новая производительная сила, была система машин, формой организации – разделение и комбинирование труда, экономическим фактором – крупный объем промышленных предприятий.
Чтобы наука могла выполнять производственные функции, она сама должна была достичь определенного уровня развития. Известно немало примеров, когда научные достижения своего времени не могли воплотиться в жизнь. И лишь в результате длительного пути развития наука начинала питать производство знаниями, которые стали находить практическое применение.
Потребности технического прогресса, запросы промышленности, производства являются постоянным источником развития науки. Отмечая взаимосвязь науки и техники, Ф. Энгельс писал: «Если... техника в значительной степени зависит от состояния науки, то в гораздо большей мере наука зависит от состояния и потребностей техники. Если у общества появляется техническая потребность, то это продвигает науку вперед больше, чем десяток университетов» [38, с.174].
Развитие науки как производительной силы общества, а, следовательно, и ее влияние на экономический рост происходит не равномерно, развитие происходило толчками или волнами. Впервые на это обратил внимание Н.Д. Кондратьев при обработке статистического материала, собранного им во время работы в Институте мировой конъюнктуры. Позднее работы Н. Кондратьева развил австрийский экономист Й. Шумпетер.
Н. Кондратьев выделил следующие длинные волны:
- первая волна – с 1787 по 1844 гг. (до 1851 в отдельных странах). Этот период он разделил на две фазы: повышательную, с 1787 по 1810 (1817 для отдельных стран) гг., и понижательную, с 1810 по 1844 (1851) гг. Причиной повышательной фазы Н. Кондратьев считал революцию в текстильной промышленности, первую промышленную революцию, которая вызвала бурное развитие машиностроения, большую потребность в производстве чугуна, что вызвало развитие экономики.
- вторая волна, по мнению Н. Кондратьева, идет с 1844 по 1890 гг. Повышательная фаза наблюдается с 1844 по 1870 гг., а понижательная – с 1870 по 1890 (1896) гг. Причиной повышательной фазы Н. Кондратьев считал строительство железных дорог, что вызвало освоение всех территорий, складывание национального и мирового рынков.
- третью волну он полагал с 1890 года, а ее повышательную фазу он ограничил 1914–1920 гг. Он связывал эту длинную волну с широким внедрением в производство электричества и с развитием автомобилестроения. В своих работах Н. Кондратьев прогнозировал с 1920 года нисходящую фазу волны. Третья волна закончилась в 1940 году, поэтому считается, что после смерти Н. Кондратьева, с 1940 года, началась четвертая длинная волна, которая продолжалась до 70-х годов как повышательная фаза. [31, c.143].