Смекни!
smekni.com

Статистические гипотезы (стр. 3 из 4)

Для нормального закона возможные значения случайной величины лежат в диапазоне от минус до плюс бесконечности, поэтому при расчетах оценок вероятностей крайний левый и крайний правый интервалы расширяются до минус и плюс бесконечности соответственно. Вычислить значения функции нормального распределения можно, воспользовавшись стандартными функциями табличного процессора или полиномом наилучшего приближения.

Сумма взвешенных квадратов отклонения c2=1,32. Число степеней свободы

k = 6–1–2=3,

так как уклонения связаны линейным соотношением

,

кроме того, на уклонения наложены еще две связи, ибо по выборке были определены два параметра распределения. Критическое значение c2(3; 0,05)=7,815 определяется по табл. П.3 приложения. Поскольку соблюдается условие c2<c2(3; 0,05), то полученный результат нельзя считать значимым и гипотеза о нормальном распределении генеральной совокупности не противоречит ЭД.

Критерий А.Н. Колмогорова

Для применения критерия А.Н. Колмогорова ЭД требуется представить в виде вариационного ряда (ЭД недопустимо объединять в разряды). В качестве меры расхождения между теоретической F(x) и эмпирической Fn(x) функциями распределения непрерывной случайной величины Х используется модуль максимальной разности

А.Н. Колмогоров доказал, что какова бы ни была функция распределения F(x) величины Х при неограниченном увеличении количества наблюдений n функция распределения случайной величины

асимптотически приближается к функции распределения

.

Иначе говоря, критерий А.Н. Колмогорова характеризует вероятность того, что величина

не будет превосходить параметрlдля любой теоретической функции распределения. Уровень значимости a выбирается из условия

,

в силу предположения, что почти невозможно получить это равенство, когда существует соответствие между функциями F(x) и Fn(x). Критерий А.Н. Колмогорова позволяет проверить согласованность распределений по малым выборкам, он проще критерия хи-квадрат, поэтому его часто применяют на практике. Но требуется учитывать два обстоятельства.

1. В соответствии с условиями его применения необходимо пользоваться следующим соотношением

где

.

2. Условия применения критерия предусматривают, что теоретическая функция распределения известна полностью – известны вид функции и значения ее параметров. На практике параметры обычно неизвестны и оцениваются по ЭД. Но критерий не учитывает уменьшение числа степеней свободы при оценке параметров распределения по исходной выборке. Это приводит к завышению значения вероятности соблюдения нулевой гипотезы, т.е. повышается риск принять в качестве правдоподобной гипотезу, которая плохо согласуется с ЭД (повышается вероятность совершить ошибку второго рода). В качестве меры противодействия такому выводу следует увеличить уровень значимости a, приняв его равным 0,1 – 0,2, что приведет к уменьшению зоны допустимых отклонений.

Критерий Р. Мизеса

В качестве меры различия теоретической функции распределения F(x) и эмпирической Fn(x) по критерию Мизеса (критерию w2) выступает средний квадрат отклонений по всем значениям аргумента x

(3.9)

Статистика критерия

(3.10)

При неограниченном увеличении n существует предельное распределение статистики nwn2. Задав значение вероятности a можно определить критические значения nwn2(a). Проверка гипотезы о законе распределения осуществляется обычным образом: если фактическое значение nwn2 окажется больше критического или равно ему, то согласно критерию Мизеса с уровнем значимости a гипотеза НО о том, что закон распределения генеральной совокупности соответствует F(x), должна быть отвергнута.

Достоинством критерия Мизеса является быстрая сходимость к предельному закону, для этого достаточно не менее 40 наблюдений в области часто используемых на практике больших значений nwn (а не несколько сот, как для критерия хи-квадрат).

Сопоставляя возможности различных критериев, необходимо отметить следующие особенности. Критерий Пирсона устойчив к отдельным случайным ошибкам в ЭД. Однако его применение требует группирования данных по интервалам, выбор которых относительно произволен и подвержен противоречивым рекомендациям. Критерий Колмогорова слабо чувствителен к виду закона распределения и подвержен влиянию помех в исходной выборке, но прост в применении. Критерий Мизеса имеет ряд общих свойств с критерием Колмогорова: оба основаны непосредственно на результатах наблюдения и не требуют построения статистического ряда, что повышает объективность выводов; оба не учитывают уменьшение числа степеней свободы при определении параметров распределения по выборке, а это ведет к риску принятия ошибочной гипотезы. Их предпочтительно применять в тех случаях, когда параметры закона распределения известны априори, например, при проверке датчиков случайных чисел.

При проверке гипотез о законе распределения следует помнить, что слишком хорошее совпадение с выбранным законом распределения может быть обусловлено некачественным экспериментом («подчистка» ЭД) или предвзятой предварительной обработкой результатов (некоторые результаты отбрасываются или округляются).

Выбор критерия проверки гипотезы относительно произволен. Разные критерии могут давать различные выводы о справедливости гипотезы, окончательное заключение в таком случае принимается на основе неформальных соображений. Точно также нет однозначных рекомендаций по выбору уровня значимости.

Рассмотренный подход к проверке гипотез, основанный на применении специальных таблиц критических точек распределения, сложился в эпоху "ручной" обработки ЭД, когда наличие таких таблиц существенно снижало трудоемкость вычислений. В настоящее время математические пакеты включают процедуры вычисления стандартных функций распределений, что позволяет отказаться от использования таблиц, но может потребовать изменения правил проверки. Например, соблюдению гипотезы Н0 соответствует такое значение функции распределения критерия, которое не превышает значение доверительной вероятности 1–a (оценка статистики критерия соответствует доверительному интервалу). В частности, для примера 3.1 значение статистики критерия хи-квадрат равно 1,318. А значение функции распределения хи-квадрат для этого значения аргумента при трех степенях свободы составляет 0,275, что меньше доверительной вероятности 0,95. Следовательно, нет оснований отвергать нулевую гипотезу.

Задание 2

Задача. Рассчитайте среднее арифметическое и среднее квадратическое отклонения и коэффициенты вариации. Объясните их содержание.

№п/п Сумма денежнойвыручки, у.е. Стоимость основных производственных фондоф, тыс. у.е. Оборотныефонды, тыс. у.е. Численностьработников,чел. Площадь сельхоз-угодий, га Энерге-тическиемощности, л.с. Покупка кормов,ц Услуги сельхоз- химии,тыс. у.е. Услуги агропром-техники, тыс. у.е.
1 2 3 4 5 6 7 8 9
1 1310 1544 288 38 510 480 25 - -
2 1262 1562 322 37 430 410 30 - 6
3 1092 498 304 36 354 342 30 - 6
4 1074 536 330 30 350 340 35 5 -
5 1144 586 354 28 390 370 20 5 -
6 1206 464 318 32 414 390 15 4 5
7 1302 626 370 40 510 400 - 6 5
8 1414 608 340 42 520 426 - 8 5
9 1546 646 388 40 530 430 - 10 -
10 1506 644 374 44 532 440 15 15 -
11 1454 716 410 43 520 410 20 14 4
12 1522 704 424 37 560 504 - 13 4
13 1636 674 390 42 606 640 - 10 -
14 1644 652 396 41 610 710 30 8 -
15 1686 598 384 44 620 678 - 5 5
16 1614 570 348 45 630 540 15 10 5
17 1636 516 306 50 636 550 25 10 6
18 1574 474 290 60 600 614 20 15 6
19 1546 458 286 55 570 600 10 5 8
20 1484 424 310 54 554 410 10 4 8
21 976 406 272 33 320 374 30 4 -
ИТОГО 29628 13906 7204 871 10766 10058 330 151 73
Ср. арифм. отклон 1410,86 662,19 343,1 41,5 512,7 478,9 15,7 7,2 3,5
Ср. квадр.откл. 294,5 302,2 45,2 8,0 96,3 110,7 8,4 3,7 1,9
Vx, % 20,9 45,6 13,2 19,3 18,8 23,1 53,5 51,4 54,3

1. Среднее арифметическое отклонение рассчитываем по формуле: