Смекни!
smekni.com

Расчет статистических показателей (стр. 2 из 3)

ИТОГ: Мода = 91,88 гр., Медиана = 86,67 гр.

Задача № 5

УСЛОВИЕ:

В порядке механической выборки обследован возраст 100 студентов ВУЗа из общего числа 2000 человек. Результаты обработки материалов наблюдения приведены в таблице:

Возраст, лет 17 18 19 20 21 22 23
Число студентов, чел. 11 13 18 23 17 10 8

Установите:

а) средний возраст студентов по выборке;

б) величину ошибки при определении возраста студентов на основе выборки;

в) вероятные пределы колебания возраста для всех студентов при вероятности 0,997;

г) определите долю студентов старше 20 лет;

д.) рассчитайте ошибку выборочной доли и установите пределы удельного веса студентов старше 20 лет в генеральной совокупности.

РЕШЕНИЕ

мода медиана вариация динамика

Нам известно n = 100 чел, N = 2000 чел, F(t) = 0,997 = 3

1. Определим среднюю по выборочной совокупности (по формуле средней арифметической)

Мы видим, что студенты в возрасте 20 лет встречаются чаще, их количество составляет 23 человека.

2. Найдем дисперсию по формуле

3. Определим предельную ошибку по формуле

, где

s2 – дисперсия варьирующего признака

n - объем выборочной совокупности

N - объем генеральной совокупности

4. После этого устанавливаются пределы, в которых находится генеральная средняя, рассчитывается по формуле

, где

t – коэффициент доверия (определяется по заданному уровню вероятности)

µ– средняя ошибка.

- предельная ошибка.

5. Рассчитаем пределы в которой находится генеральная средняя по формуле

ИТОГ: вероятные пределы колебания возраста для всех студентов при вероятности 0,997 составляют в пределах от 19,3 % до 20,4 %

6. Определим долю студентов старше 20 лет.

m= 17+10+8 = 35

7. Определим предельную ошибку по формуле

8. устанавливаются пределы, в которых находится генеральная доля, рассчитывается по формуле

9. Рассчитаем пределы в которой находится генеральная средняя по формуле

ИТОГ: пределы удельного веса студентов старше 20 лет в генеральной совокупности находятся в промежутке от 22 % до 49 %

Задача № 6

УСЛОВИЕ: Производство чугуна в стране характеризуется следующими данными:

Годы Производство чугуна, млн. т.
1990 107
1991 108
1992 107
1993 110
1994 111
1995 110

Для анализа динамики производства чугуна вычислите:

1. абсолютные приросты (или снижения), темпы роста и темпы прироста (или снижения) по годам и к 1990г.; абсолютное значение одного процента прироста (или снижения). Полученные данные представьте в таблице;

2. среднегодовое производство чугуна;

3. среднегодовой темп роста и прироста производства чугуна.

РЕШЕНИЕ

1. Для того чтоб понять, как развивалось производство чугуна, мы построили график и заметили, что производство чугуна имело и темпы роста, и темпы снижения.

Расчет показателей рядов динамики (табл.1-3):

1.1. Абсолютный прирост Таблица 1

Базисные, млн. т. Цепные, млн. т.

1.2. Темп роста Таблица 2

Базисные, % Цепные, %

1.3. Темп прироста Таблица 3

Базисные, % Цепные, %

1.4. Абсолютное значение одного % прироста Таблица 4

Базисные, % Цепные, %

Все расчетные показатели сведем в общую итоговую таблицу (табл.5).


Таблица 5

Наименование

показателя

Тип показа-

теля

Год
1981 1982 1983 1984 1985
Абсолютный прирост
1 0 3 4 3
1 -1 3 1 -1
Темп роста
100,93 100 102,8 103,74 102,8
100,93 99,07 102,8 100,91 99,1
Темп прироста
0,93 0 2,8 3,74 2,8
0,93 -0,93 2,8 0,91 -0,9
Абсолютное значение 1 % прироста
1,08 1,07 1,1 1,11 1,1
1,08 1,08 1,07 1,1 1,11

Анализ расчетных показателей подтвердил: