Смекни!
smekni.com

Основные понятия статистики (стр. 9 из 13)

,

единственный параметр которого λ неизвестен. Найти методом максимального правдоподобия оценку параметра λ

Р е ш е н и е. Испытав nкомпьютеров, мы получим выборку объёмом n : t1, ….tn. Функция плотности вероятности совместного распределения значений t1, ….tnимеет вид:

ƒ(t1, t2, ….tn, λ) = λe-λt1 λe-λt2…. λe-λtn= λne-λt1 e-λt2…. e-λtn

поскольку выражение для функции плотности вероятности представляет собой произведение экспонент, то лучше воспользоваться логарифмической формой функции правдоподобия:

ln ƒ(t1, t2, ….tn, λ) = ln [λne-λt1 e-λt2…. e-λtn ] = nlnλ – λ (t1 + t2 + ….+ tn).

Уравнение максимального правдоподобия будет иметь вид:

– (t1 + t2 + ….+ tn) = 0

Как было установлено в теории вероятностей, математическое ожидание для показательного распределения равно М(Х) =

и обозначая
, получим:

Пример. Пусть интересующая нас случайная величина распределена по нормальному закону с неизвестными параметрами Мх и σ (математическое ожидание и среднеквадратическое отклонение) и получена выборка на основе опытов объёмом n : х1, …..хn. Найти методом максимального правдоподобия оценку параметров Мх и σ.

Р е ш е н ие. Плотность вероятности совместного распределения значений х1, …..хnнезависимых нормально распределённых случайных величин имеет вид:

ƒ(х1, х2, ….хn, Мх, σ) =

…..
=

=

Воспользуемся логарифмической формой представления функции правдоподобия:

ln ƒ(х1, х2, ….хn, Мх, σ) = -

ln 2π -
lnσ2
=

-

ln 2π -
lnD

Обозначим σ2 = D – дисперсию распределения признака Х. Уравнения максимального правдоподобия для оценки параметров Мх и σ2 = D имеют вид:


-
= 0

Решения этой системы дают оценки параметров:

Пример. Найти методом максимального правдоподобия оценку параметра λ в распределении Пуассона

на основе проведенных опытов.

Решение. Будем называть опытом группу из n испытаний. При этом в каждом опыте фиксируем число появления рассматриваемого события. Пусть таких независимых опытов будет к. Обозначим число появлений события в i-м опыте mi.Функция плотности вероятности совместного распределения количества появления рассматриваемого события m1, m2,…. mk имеет вид:

ƒ(m1, m2, ….mn, λ) =

…….
=

Находим логарифм этой функции:

Ln ƒ(m1, m2, ….mn, λ) =

Возьмём первую производную по λи приравняем её к нулю. Получим уравнение максимального правдоподобия:

,

откуда

Если взять вторую производную

то оказывается, что она отрицательная. Это значит, что при полученном значении

функция правдоподобия lnƒ(m1, m2, ….mn, λ) достигает максимума.

Вывод. Метод максимального правдоподобия является эффективным в случае малых выборок, но часто требует довольно сложных вычислений.

Метод моментов (Пирсона)

Идея метода моментов заключается в приравнивании теоретических и соответствующих им эмпирических моментов, причём число моментов и, следовательно, число уравнений для определения неизвестных параметров распределений берется равным числу параметров. Покажем применение метода на тех же примерах, что и предыдущем пункте.

Напомним, что для случайной величины определены её числовые характеристики – начальные и центральные моменты. Для дискретной случайной величины:

теоретическим моментом к-го порядка называется соотношение вида:


Мкт =

.

Эмпирическим моментом к-го порядка для несгруппированных данных называется соотношение вида:

Мкэ =

Если принять А = 0, то моменты в этом случае называются начальными. Обычно их обозначают малыми латинскими буквами.

,
.

Например, начальный момент первого порядка m1 - есть математическое ожидание.

Если принять А = m1, то моменты называются центральными. Обычно их обозначают малыми греческими буквами.

μк T =

, μк Э =
.

Например, μ2 - есть дисперсия.

В случае непрерывных случайных величин в теоретических моментах суммы заменяются интегралами с бесконечными пределами.

Пример. Для показательного распределения единственным параметром является λ. Для его оценивания нужно одно уравнения. Возьмем, например, приравняем первые начальные моменты – теоретический и эмпирический.

Первый начальный теоретический момент получается интегрированием по частям выражения:

m1Т =

Первый начальный эмпирический момент имеет вид: m1Э =

Приравняем их:

m1Э = m1Т

=
=

Пример. Для нормального распределения, определенного двумя параметрами, Мх и σ, приравняем теоретический и эмпирический моменты первого порядка и центральные моменты второго порядка: m1T = Mx, μ2T = σ2

m1Э =

, μ2Э =

отсюда

,
=

или

В ы в о д ы. В рассмотренных примерах оценки, полученные методом максимального правдоподобия и моментов, совпали, однако этот факт не является общим. Для других распределений оценки, полученные различными методами, могут не совпадать.

Итак, оценками двух основных параметров генеральной совокупности,– математического ожидания и дисперсии являются:

- для математического ожидания - выборочная средняя, определяемая как среднее арифметическое полученных по выборке значений:

,

где xi – варианта выборки, ni – частота повторяемости варианты, n – объём выборки