Смекни!
smekni.com

Анализ экономических данных в странах третьего мира (стр. 1 из 3)

Задание для выполнения практической работы по дисциплине эконометрика

корреляция регрессия гетероскедастичность

Работа включает в себя анализ реальных экономических данных при помощи изученных эконометрических моделей.

Работа должны быть выполнена в соответствии со следующими этапами:

1) Рассчитайте корреляцию между, экономическими показателями (не менее 5) из статистических данных по выборке не менее 30 наблюдений (из Интернета, печатных источников или Вашего предприятия). Интерпретируйте полученные данные.

2) Постройте линейную и не линейную (на свой выбор) множественную регрессию. Определите теоретическое уравнение множественной регрессии. Оцените адекватность построенной модели. Определите значимость переменных, найдите среднюю ошибку аппроксимации (вручную в экселе), коэффициент детерминации, линейные коэффициенты корреляции между всеми членами регрессии, найти критерий Фишера, Т-статистику и т. д.

3) Проверьте модели на отсутствие автокорреляции.

4) Проверка на гетероскедастичность моделей.

5) Сравните модели между собой выберете лучшую

Работа выполняется на листах формата А4, с титульным листом и обязательными выводами по работе. Решение: Сбор данных из интернет – источников получены данные средней продолжительности жизни, ВВП в паритетах покупательной способности, темпы прироста населения по сравнению с предыдущим годом, %; темпы прироста рабочей силы по сравнению с предыдущим годом, %; коэффициент младенческой смертности. Изучим зависимость продолжительности жизни от нескольких факторов по данным за 2005 г., представленным в табл.1.

Таблица 1. Обзор социальных показателей стран третьего мира.

Страна У Х1 Х2 Х3 Х4
Мозамбик 47 3,0 2,6 2,4 113
Бурунди 49 2,3 2,6 2,7 98
Чад 48 2,6 2,5 2,5 117
Непал 55 4,3 2,5 2,4 91
Буркина-Фасо 49 2,9 2,8 2,1 99
Мадагаскар 52 2,4 3,1 3,1 89
Бангладеш 58 5,1 2,0 2,1 79
Гаити 57 3,4 2,0 1,7 72
Мали 50 2,0 2,9 2,7 123
Нигерия 53 4,5 2,9 2,8 80
Кения 58 5,1 2,7 2,7 58
Того 56 4,2 3,0 2,8 88
Индия 62 5,2 1,8 2,0 68
Бенин 50 6,5 2,9 2,5 95
Пакистан 68 7,4 3,1 4,0 46
Мавритания 59 7,4 2,8 2,7 73
Зимбабве 47 4,9 3,1 2,8 124
Гондурас 60 8,3 2,9 3,3 90
Китай 51 5,7 2,5 2,7 96
Камерун 57 7,5 2,4 2,2 55
Конго 67 7,0 3,0 3,8 45
Шри-Ланка 69 10,8 1,1 1,1 34
Египет 57 7,8 2,9 3,1 56
Индонезия 51 7,6 2,9 2,6 90
Филиппины 72 12,1 1,3 2,0 16
Марокко 63 14,2 2,0 2,7 56
Папуа - Новая 64 14,1 1,6 2,5 51
Гвинея 66 10,6 2,2 2,7 39
Гватемала 65 12,4 2,0 2,6 55
Эквадор 57 9,0 2,3 2,3 64
Доминиканская Республика 66 12,4 2,9 3,5 44
Ямайка 69 15,6 2,2 3,2 36

Принятые в таблице обозначения:

у — средняя продолжительность жизни, лет;

х1 - ВВП в паритетах покупательной способности, млрд. долл.;

х2 - темпы прироста населения по сравнению с предыдущим годом, %;

х3 - темпы прироста рабочей силы по сравнению с предыдущим годом;

х4 - коэффициент младенческой смертности, %с.

1. Корреляционный анализ

Корреляционный анализ проводился с использованием компьютерной программы EXCEL с помощью пакета анализа данных

Таблица 2. Корреляционная зависимость продолжительности жизни от различных факторов.

У Х1 Х2 Х3 Х4
У 1
Х1 0,7782 1
Х2 -0,524 -0,49 1
Х3 0,1123 0,096 0,6963 1
Х4 -0,928 -0,763 0,523 -0,032 1

На основании полученных данных можно сделать вывод, что наибольшее влияние на продолжительность жизни оказывает фактор Х1- ВВП в паритетах покупательной способности, у остальных факторов наблюдается слабый корреляционный отклик.

3. Для выбора наилучшей регрессионной функции необходимо ее проанализировать по набору критериев: коэффициенты попарной корреляции, коэффициенты множественной корреляции, критерий Фишера, статистики Стьюдента.

Строим регрессионную функцию по всем регрессорам, использую при этом пакет анализа данных MS Excel «Регрессия»

Таблица 3. Регрессионная статистика

Множественный R 0,9546
R-квадрат 0,9112
Нормированный R-квадрат 0,8981
Стандартная ошибка 2,3541
Наблюдения 32

Пояснения к таблице 2. Регрисеонная статистика содержит строки, характеризующие построенное уравнение регрессии:

Для парной регрессии Множественный R равен коэффициенту корреляции (r). Множественный коэффициент корреляции R определяется как коэффициент корреляции между наблюдаемыми значениями Yi и расчетными, прогнозируемыми значениями. По его значению 0,9546 можно сказать, что между X и Y существует сильная линейная зависимость.

Строка R–квадрат равна коэффициенту корреляции в квадрате, он близок к 1, это означает что данная модель хорошо описывает данные

Нормированный R–квадрат рассчитывается с учетом степеней свободы числителя (n-2) и знаменателя (n-1) по формуле:

Стандартная ошибка (S) регрессии вычисляется по формуле 1.4.

Последняя строка содержит количество выборочных данных (n). Значимость уравнения в целом оценивается с помощью F-критерия Фишера

Если найденное значение F больше табличного для уровня значимости α и степеней свободы (n-m-1) и m, то с вероятность 1 - α делаем заключение о статистической значимости уравнения в целом.

Таблица 4 Дисперсионный анализ

df SS MS F Значимость F
Регрессия 4 1535,9 383,97 69,285 8,42972E-14
Остаток 27 149,63 5,5418
Итого 31 1685,5

Пояснения к таблице дисперсионного анализа: число регрессоров m = 4 число n-m-1 = 27, где n – число наблюдений

Для уровня значимости α = 0,05 и при степенях свободы 4, 27 табличное значение критерия Фишера Fтаб = 2,71.

Значение F =69,285 существенно превышает табличное, что говорит о статистической значимости уравнения в целом.

Таблица 5 Коэффициенты регрессии

Коэффициенты Стандартная ошибка t-статистика P-Значение Нижние 95% Верхние 95%
Y-пересечение 72,846 3,4746 20,965 3E-18 65,717 79,976
Х1 0,0031 0,1929 0,0163 0,9871 -0,3925 0,3989
Х2 -6,173 1,9298 -3,199 0,0035 -10,132 -2,213
Х3 5,1218 1,5086 3,395 0,0021 2,02631 8,2173
Х4 -0,18 0,0258 -6,98 2E-07 -0,2326 -0,127

В столбце «Коэффициенты» получены коэффициенты уравнения регрессии.

Коэффициент b0= 72,846 в Таблице анализа – это Y-пересечение. Таким образом, получили уравнение регрессии:

У=72,846+0,0031Х1-6,173Х2+5,122Х3-0,18Х4

Коэффициент b1=0,0013 показывает, что при увеличении ВВП на 1 млр. дол. Средняя продолжительность жизни увеличивается в среднем на 0,0031 лет, увеличение темпов прироста населения на 1%,. приводит в среднем уменьшению продолжительности жизни на 6,173 лет, увеличение темпов прироста рабочей силы на 1% приводит к увеличению продолжительности жизни на 5,122 лет, а увеличение коэффициента младенческой смертности, на 1% ведет к уменьшению средней продолжительности жизни на 0,18 лет.

Стандартные ошибки mi, t-статистики ti могут быть вычислены по формулам

Где σY - среднее квадратическое отклонение для отклика Y, σXi - среднее квадратическое отклонение для регрессора Xi (X1, X2, …)R2- коэффициент детерминации для уравнения множественной регрессии,

- коэффициент детерминации для зависимости отклика Y от всех регрессоров кроме Xi,
- коэффициент детерминации для зависимости Xi от всех регрессоров кроме Xi.

Табличные t–критерии Стьюдента зависят от принятого уровня значимости и от числа степеней свободы (n-m-1). Если вычисленные значения t–критерия превышают табличные, то говорят, что соответствующий коэффициент регрессии является статистически значимым и на него можно опираться в анализе и прогнозе.

Более того, используя табличное значение t-критерия и стандартную ошибку mi коэффициента регрессии bi можно с вероятностью 1 - α сделать вывод о том, что истинное значение коэффициента регрессии попадет в интервал (bi – tтаб*mi , bi + tтаб*mi).

Они составляют:

m(X1) =0.192, m(X2) =1,9289, m(X3) =1,5086, m(X4) =0.0258, m(y) =3.4746