Смекни!
smekni.com

Анализ экономических данных в странах третьего мира (стр. 2 из 3)

t(X1) =0.0163, t(X2) =-3.199, t(X3) =3.395, t(X4) =-6.98, t(y) =20.965

Табличное значение t–критерия Стьюдента при уровне значимости α = 0,05 и числе степеней свободы 27 tтаб =2,051. Коэффициенты t- статистики при регрессорах Х1 , Х2 и Х4 меньше t таб., и согласно t–критерию не являются статистически значимыми.

По величине Р-значения возможно определять значимость коэффициентов, не находя критическое значение t-статистики. Если значение t-статистики велико, то соответствующее значение вероятности значимости мало – меньше 0,05, и можно считать, что коэффициент регрессии значим. И наоборот, если значение t-статистики мало, соответственно вероятность значимости больше 0,05 – коэффициент считается незначимым.

Для коэффициентов b0, b2, b3, b4 значения вероятности близко к нулю, следовательно, b1 можно считать значимым, b1- близко к единице, коэффициент не значим.

Далее представлены доверительные интервалы (нижняя и верхняя границы) для рассчитанных коэффициентов.

Таблица 6 Расчет относительной ошибки аппроксимации

Страна У у ожидаемое остатки E остатки/у
Мозамбик 47 48,735 -1,73 0,0369
Бурунди 49 52,969 -3,97 0,081
Чад 48 49,143 -1,14 0,0238
Непал 55 53,316 1,68 0,0306
Буркина-Фасо 49 48,485 0,52 0,0105
Мадагаскар 52 53,552 -1,55 0,0299
Бангладеш 58 57,027 0,97 0,0168
Гаити 57 56,234 0,77 0,0134
Мали 50 46,617 3,38 0,0677
Нигерия 53 54,877 -1,88 0,0354
Кения 58 59,56 -1,56 0,0269
Того 56 52,819 3,18 0,0568
Индия 62 59,73 2,27 0,0366
Бенин 50 50,647 -0,65 0,0129
Пакистан 68 65,915 2,08 0,0307
Мавритания 59 56,25 2,75 0,0466
Зимбабве 47 45,724 1,28 0,0272
Гондурас 60 55,648 4,35 0,0725
Китай 51 53,956 -2,96 0,058
Камерун 57 59,399 -2,40 0,0421
Конго 67 65,687 1,31 0,0196
Шри-Ланка 69 65,577 3,42 0,0496
Египет 57 60,742 -3,74 0,0657
Индонезия 51 52,062 -1,06 0,0208
Филиппины 72 72,195 -0,20 0,0027
Марокко 63 64,082 -1,08 0,0172
Папуа - Новая 64 66,61 -2,61 0,0408
Гвинея 66 66,082 -0,08 0,0012
Гватемала 65 63,929 1,07 0,0165
Эквадор 57 58,912 -1,91 0,0335
Доминиканская Республика 66 64,964 1,04 0,0157
Ямайка 69 69,197 -0,20 0,0029
сумма 1,0424
средняя ошибка аппроксимации 3,2574

Средняя ошибка аппроксимации показывает среднее отклонение расчетных значений от фактических и рассчитывается по формуле:

Средняя ошибка аппроксимации составляет 3,2574 %. Это значит, что качество тренда, исходя из относительных отклонений по каждому наблюдения, признается хорошим, так в норме средняя ошибка аппроксимации колеблется в пределах до 10%

3) Проверка модели на отсутствие автокорреляции

Автокорреляция (последовательная корреляция) определяется как корреляция между наблюдаемыми показателями

При проверке независимости значений ei определяется отсутствие в остаточном ряду автокорреляции, под которой понимается корреляция между элементами одного и того же числового ряда. В нашем случае автокорреляция - это корреляция ряда e1, e2, e3 ... с рядом eL+1, eL+2, eL+3 Число L характеризует запаздывание (лаг). Корреляция между соседними членами ряда (т.е. когда L = 1) называется автокорреляцией первого порядка. Далее для остаточного ряда будем рассматривать зависимость между соседними элементами ei.

Наличие автокорреляции может быть выявлено при помощи d-критерия Дарбина-Уотсона. Значение критерия вычисляется по формуле:

Таблица 7. Расчет критерия d - Дарбина-Уотсона

Страна остатки E (Ei –Ei-1)2 Ei2
Мозамбик -1,73 3,01 3,01
Бурунди -3,97 4,9903 15,75
Чад -1,14 7,9868 1,31
Непал 1,68 7,9914 2,84
Буркина-Фасо 0,52 1,3661 0,27
Мадагаскар -1,55 4,2746 2,41
Бангладеш 0,97 6,3751 0,95
Гаити 0,77 0,0428 0,59
Мали 3,38 6,8497 11,44
Нигерия -1,88 27,662 3,52
Кения -1,56 0,1 2,43
Того 3,18 22,484 10,12
Индия 2,27 0,8299 5,15
Бенин -0,65 8,5083 0,42
Пакистан 2,08 7,46 4,35
Мавритания 2,75 0,4422 7,56
Зимбабве 1,28 2,1712 1,63
Гондурас 4,35 9,4605 18,94
Китай -2,96 53,41 8,74
Камерун -2,40 0,3109 5,75
Конго 1,31 13,775 1,72
Шри-Ланка 3,42 4,4504 11,71
Египет -3,74 51,337 14,01
Индонезия -1,06 7,1856 1,13
Филиппины -0,20 0,7508 0,04
Марокко -1,08 0,7854 1,17
Папуа - Новая -2,61 2,3372 6,81
Гвинея -0,08 6,3933 0,01
Гватемала 1,07 1,3285 1,15
Эквадор -1,91 8,8971 3,66
Доминиканская Республика 1,04 8,6895 1,07
Ямайка -0,20 1,5193 0,04
сумма 283,18 149,69
критерий d 1,8918

В таблице значений критерия Дарбина-Уотсона для уровня значимости 5% при m=4и n=32 критические значения d1=1.14, d2=1,74,

В нашем расчете значение d-критерия попадает в интервал от d2 до 2, автокорреляция отсутствует.

4) Проверка на гетероскедастичность моделей с использованием теста Бреуша-Пагана

Для этого проверки на гетероскедастичность воспользуемся таблицами 6 и 7

Затем строим регрессию, в которой за зависимую переменную берется столбец квадратов остатков еi2, а за зависимые переменные – переменные Х1, Х2, Х3, Х4,

Результат представлен в таблицах 8,9,10

Таблица 8. Регрессионная статистика

Множественный R 0,222046
R-квадрат 0,049305
Нормированный R-квадрат -0,09154
Стандартная ошибка 5,309145
Наблюдения 32
Таблица 9. Дисперсионный анализ
df SS MS F Значимость F
Регрессия 4 39,4692 9,867301 0,35006 0,841652584
Остаток 27 761,0497 28,18702
Итого 31 800,5189

Таблица 10. Коэффициенты регресси

Коэффициенты Стандартная ошибка t-статистика P-Значение Нижние 95% Верхние 95%
Y-пересечение 3,561922 7,836107 0,454552 0,65306 -12,516 19,6402
Х1 -0,21277 0,434968 -0,48916 0,62868 -1,1052 0,67971
Х2 -2,64445 4,352113 -0,60762 0,54851 -11,574 6,28535
Х3 2,473815 3,402388 0,727082 0,47343 -4,5073 9,45493
Х4 0,036775 0,058082 0,633148 0,53196 -0,0824 0,15595

Найдена статистика:

Х2наб = nR2=32*0.049305=1,578

Так как

Х2набл=1,578< Х2крит =9,48,

То гипотеза о гетероскедастичности отвергается и модель считается гомоскедастичной.

Критическое значение распределения Хи-квадрат найдено с помощью действий: fx→Статистические→ХИ2ОБР(m), где m – число переменных, входящих в уравнение регрессии (в данном случае 6).

5) Сравните модели между собой выберете лучшую.

Как уже отмечалось ранее по величине Р-значения возможно определять значимость коэффициентов, не находя критическое значение t-статистики. Если значение t-статистики велико, то соответствующее значение вероятности значимости мало – меньше 0,05, и можно считать, что коэффициент регрессии значим. И наоборот, если значение t-статистики мало, соответственно вероятность значимости больше 0,05 – коэффициент считается незначимым.

Для коэффициентов b0, b2, b3, b4 полученных при регрессионном анализе в п.4 значения вероятности близко к 1, следовательно, данные коэффициенты не значимы.

Таким образом, модель выраженная уравнением

У=72,846+0,0031Х1-6,173Х2+5,122Х3-0,18Х4

Выводы

Проанализировав данные зависимости средней продолжительности жизни в странах третьего мира ВВП, темпы прироста населения, темпы прироста рабочей силы и коэффициент младенческой смертности можно сделать ряд выводов:

1. В результате проведенного корреляционного анализа наибольшее

влияние на среднюю продолжительность жизни оказывает ВВП, у остальных факторов наблюдается слабый корреляционный отклик.

2. В ходе регрессионного анализа было получено уравнение зависимости:

У=72,846+0,0031Х1-6,173Х2+5,122Х3-0,18Х4

При этом коэффициент b1=0,0013 показывает, что при увеличении ВВП на 1 млрд. дол. средняя продолжительность жизни увеличивается в среднем на 0,0031 лет, увеличение темпов прироста населения на 1%,. приводит в среднем уменьшению продолжительности жизни на 6,173 лет, увеличение темпов прироста рабочей силы на 1% приводит к увеличению продолжительности жизни на 5,122 лет, а увеличение коэффициента младенческой смертности, на 1% ведет к уменьшению средней продолжительности жизни на 0,18 лет.

3. По значению коэффициента множественной корреляции регрессии равным 0,9546 можно сказать, что между факторными и результативными признаками существует сильная линейная зависимость.