Смекни!
smekni.com

Анализ методов прогнозирования и моделирование нейронных сетей для прогнозирования стоимости недвижимости (стр. 8 из 13)

Рассмотренная простая модель искусственного нейрона игнорирует многие свойства своего биологического двойника. Например, она не принимает во внимание задержки во времени, которые воздействуют на динамику системы. Входные сигналы сразу же порождают выходной сигнал. И, что более важно, она не учитывает воздействий функции частотной модуляции или синхронизирующей функции биологического нейрона, которые ряд исследователей считают решающими.

Свою силу нейронные сети черпают, во-первых, из распараллеливания обработки информации и, во-вторых, из способности самообучаться, т.е. создавать обобщения. Под термином обобщение понимается способность получать обоснованный результат на основании данных, которые не встречались в процессе обучения. Эти свойства позволяют нейронным сетям решать сложные (масштабные) задачи, которые на сегодняшний день считаются трудноразрешимыми. Однако на практике при автономной работе нейронные сети не могут обеспечить готовые решения. Их необходимо интегрировать в сложные системы. В частности, комплексную задачу можно разбить на последовательность относительно простых, часть из которых может решаться с помощью НС.

Итак, приведем некоторые преимущества и достоинства нейронных сетей перед традиционными вычислительными системами.

1. Решение задач при неизвестных закономерностях.

2. Устойчивость к шумам во входных данных.

3. Адаптация к изменениям окружающей среды.

4. Потенциальное сверхвысокое быстродействие.

5. Отказоустойчивость при аппаратной реализации нейронной сети.

Нейросетевые технологии можно использовать во многих областях человеческой деятельности, например:

1. Экономика и бизнес. Предсказание рынков, автоматический дилинг, оценка риска невозврата кредитов, предсказание банкротств, оценка стоимости недвижимости, выявление пере- и недооцененных компаний, автоматическое рейтингование, оптимизация портфелей, оптимизация товарных и денежных потоков, автоматическое считывание чеков и форм, безопасность транзакций по пластиковым карточкам.

2. Медицина. Обработка медицинских изображений, мониторинг состояния пациентов, диагностика, факторный анализ эффективности лечения, очистка показаний приборов от шумов.

3. Авионика. Обучаемые автопилоты, распознавание сигналов радаров, адаптивное пилотирование сильно поврежденного самолета.

4. Связь. Сжатие видео-информации, быстрое кодирование-декодирование, оптимизация сотовых сетей и схем маршрутизации пакетов.

5. Интернет. Ассоциативный поиск информации, электронные секретари и агенты пользователя в сети, фильтрация информации в push-системах, коллаборативная фильтрация, рубрикация новостных лент, адресная реклама, адресный маркетинг для электронной торговли.

6. Автоматизация производства. Оптимизация режимов производственного процесса, комплексная диагностика качества продукции (ультразвук, оптика, гамма-излучение), мониторинг и визуализация многомерной диспетчерской информации, предупреждение аварийных ситуаций, робототехника.

7. Политические технологии. Анализ и обобщение социологических опросов, предсказание динамики рейтингов, выявление значимых факторов, объективная кластеризация электората, визуализация социальной динамики населения.

8. Безопасность и охранные системы. Системы идентификации личности, распознавание голоса, лиц в толпе, распознавание автомобильных номеров, анализ аэро-космических снимков, мониторинг информационных потоков, обнаружение подделок.

9. Ввод и обработка информации. Обработка рукописных чеков, распознавание подписей, отпечатков пальцев и голоса. Ввод в компьютер финансовых и налоговых документов.

10. Геологоразведка. Анализ сейсмических данных, ассоциативные методики поиска полезных ископаемых, оценка ресурсов месторождений.

4.2 Функционирование ИНС

Модели НС могут быть программного и аппаратного исполнения. Рассмотрим модель НС программного исполнения.

Несмотря на существенные различия, отдельные типы НС обладают несколькими общими чертами.


Рисунок 4.4 - Структурная схема искусственного нейрона

Во-первых, основу каждой НС составляют относительно простые, в большинстве случаев – однотипные, элементы (ячейки), имитирующие работу нейронов мозга. Далее под нейроном будет подразумеваться искусственный нейрон, то есть ячейка НС. Каждый нейрон характеризуется своим текущим состоянием по аналогии с нервными клетками головного мозга, которые могут быть возбуждены или заторможены. Он обладает группой синапсов – однонаправленных входных связей, соединенных с выходами других нейронов, а также имеет аксон – выходную связь данного нейрона, с которой сигнал (возбуждения или торможения) поступает на синапсы следующих нейронов. Общий вид нейрона приведен на рисунке 4.4. Каждый синапс характеризуется величиной синаптической связи или ее весом wi, который по физическому смыслу эквивалентен электрической проводимости.

Текущее состояние нейрона определяется, как взвешенная сумма его входов:

.(4.4)

Выход нейрона есть функция его состояния:


(4.5)

Рисунок 4.5 - а) функция единичного скачка; б) линейный порог (гистерезис); в) сигмоид – гиперболический тангенс; г) сигмоид – формула (3.6)

Нелинейная функция f называется активационной и может иметь различный вид, как показано на рисунке 4.5. Одной из наиболее распространенных является нелинейная функция с насыщением, так называемая логистическая функция или сигмоид (т.е. функция S-образного вида):

.(4.5)

При уменьшении a сигмоид становится более пологим, в пределе при a=0 вырождаясь в горизонтальную линию на уровне 0.5, при увеличении a сигмоид приближается по внешнему виду к функции единичного скачка с порогом T в точке x=0. Из выражения для сигмоида очевидно, что выходное значение нейрона лежит в диапазоне [0,1]. Одно из ценных свойств сигмовидной функции – простое выражение для ее производной

(4.6)

Следует отметить, что сигмоидная функция дифференцируема на всей оси абсцисс, что используется в некоторых алгоритмах обучения. Кроме того она обладает свойством усиливать слабые сигналы лучше, чем большие, и предотвращает насыщение от больших сигналов, так как они соответствуют областям аргументов, где сигмоид имеет пологий наклон.

Рисунок 4.6 - Однослойный перцептрон

Возвращаясь к общим чертам, присущим всем НС, отметим, во-вторых, принцип параллельной обработки сигналов, который достигается путем объединения большого числа нейронов в так называемые слои и соединения определенным образом нейронов различных слоев, а также, в некоторых конфигурациях, и нейронов одного слоя между собой, причем обработка взаимодействия всех нейронов ведется послойно.

Выбор структуры НС осуществляется в соответствии с особенностями и сложностью задачи. Для решения некоторых отдельных типов задач уже существуют оптимальные, на сегодняшний день, конфигурации. Если же задача не может быть сведена ни к одному из известных типов, разработчику приходится решать сложную проблему синтеза новой конфигурации. При этом он руководствуется несколькими основополагающими принципами: возможности сети возрастают с увеличением числа ячеек сети, плотности связей между ними и числом выделенных слоев; введение обратных связей наряду с увеличением возможностей сети поднимает вопрос о динамической устойчивости сети; сложность алгоритмов функционирования сети (в том числе, например, введение нескольких типов синапсов – возбуждающих, тормозящих и др.) также способствует усилению мощи НС. Вопрос о необходимых и достаточных свойствах сети для решения того или иного рода задач представляет собой целое направление нейрокомпьютерной науки. Так как проблема синтеза НС сильно зависит от решаемой задачи, дать общие подробные рекомендации затруднительно. В большинстве случаев оптимальный вариант получается на основе интуитивного подбора.

Очевидно, что процесс функционирования НС, то есть сущность действий, которые она способна выполнять, зависит от величин синоптических связей, поэтому, задавшись определенной структурой НС, отвечающей какой-либо задаче, разработчик сети должен найти оптимальные значения всех переменных весовых коэффициентов (некоторые синоптические связи могут быть постоянными).

4.3 Модель многослойного персептрона

Среди искусственных нейронных сетей, применяемых в экономике, наибольшее распространение получили ИНС, обучаемые с учителем, а среди них – многослойные нейронные сети типа МП.

На сегодняшний день многослойный персептрон - одна из самых используемых нейросетей. Одно из главных преимуществ многослойного персептрона, это возможность решать алгоритмически неразрешимые задачи или задачи, для которых алгоритмическое решение неизвестно, но для которых возможно составить репрезентативный набор примеров с известными решениями. При обучении нейросеть, за счёт своего внутреннего строения, выявляет закономерности в связи входных и выходных образов, тем самым как бы "обобщает" полученный на обучающей выборке опыт. В этой способности к обобщению и состоит основа привлекательности многослойного персептрона. Исследователь может сам и не знать какова зависимость между входными и выходными образами, достаточно иметь большой набор векторов, для которых известен ожидаемый выход. Многослойный персептрон можно успешно применять для решения следующих задач: