Дисперсия относительно условного нуля:
, (5.9)где k – ширина этого интервала.
А – условный ноль, в качестве которого можно использовать середину интервала с наибольшей частотой.
Рассчитаем дисперсию по формулам (5.7), (5.8), (5.9) для таблица3:2
Рассчитаем дисперсию по формулам (5.7), (5.8), (5.9) для таблицы 3.4:
Рассчитаем дисперсию по формулам (5.7), (5.8), (5.9) для таблицы 3.6:
Среднее квадратическое отклонение представляет собой корень квадратный из дисперсии:
(5.10)Рассчитаем среднее квадратическое отклонение для таблицы 3.2:
Рассчитаем среднее квадратическое отклонение для таблицы 3.4:
Рассчитаем среднее квадратическое отклонение для таблицы 3.6:
В статистической практике часто возникает необходимость сравнения вариации различных признаков. При сравнении изменчивости различных признаков в совокупности для оценки интенсивности вариации, для сравнения ее в разных совокупностях и для разных признаков удобно применять относительные показатели вариации.
Коэффициент осцилляции отражает относительную колеблемость крайних значений признака вокруг средней:
, (5.11)где
- коэффициент осцилляции;R – размах вариации.
Относительное линейное отклонение характеризует долю усредненного значения абсолютных отклонений от средней величины:
, (5.12)где
- среднее линейное отклонение.Коэффициент вариации (3.4) – наиболее часто применяемый показатель относительной колеблемости, характеризующий однородность совокупности. Совокупность считается однородной, если коэффициент вариации не превышает 33% для распределений, близких к нормальному. Коэффициент вариации применяется для сравнения колеблемости разнородных признаков.
Для таблицы 3.2 рассчитаем относительные показатели:
Коэффициент вариации превышает 33%, значит совокупность неоднородна.
Рассчитаем относительные показатели для таблицы 3.4:
Коэффициент вариации превышает 33%, значит совокупность неоднородна.
Рассчитаем относительные показатели для таблицы 3.6
Коэффициент вариации превышает 33%, значит совокупность неоднородна.
Мода – значение признака, чаще всего встречающееся в совокупности. Для дискретного вариационного ряда мода определяется по частотам вариант и соответствует варианте с максимальной частотой. В интервальном вариационном ряду с равными интервалами модальный интервал определяется по наибольшей частоте.
Мода определяется по следующей формуле:
(6.1)где Мо – мода;
- нижняя граница модального интервала; - величина модального интервала; - частота модального интервала; - частота интервала, предшествующего модальному; - частота интервала, последующего за модальным.Для таблицы 3.2 рассчитаем моду. В данном распределении интервал 121-1814 будет модальным, так как он имеет наибольшую частоту. Определим моду:
Моду в интервальном ряду можно определить графически. Мода определяется по гистограмме распределения. Для этого выбирается самый высокий прямоугольник, который является в данном случае модальным. Затем правую вершину модального прямоугольника соединяем с правым верхним углом предыдущего прямоугольника. А левую вершину модального прямоугольника – с левым верхним углом последующего прямоугольника. Далее из точки их пересечения опускают перпендикуляр на ось абсцисс.
Абсцисса точки пересечения этих прямых и будет модой распределения. На рисунке 6.1 представлено графическое изображение моды для ряда распределения, представленного в таблице 3.2.
Рис. 6.1 Графическое определение моды по гистограмме
Для ряда распределения, представленного в таблице 3.4, определим моду. В данном распределении интервал 2,17-19,52 будет модальным, так как он имеет наибольшую частоту. Мода:
Графическое построение моды для данной совокупности представлено на рис. 6.2.
Для ряда распределения, представленного в таблице 3.6, определим моду. В данном распределении интервал15800-5460 будет модальным, так как он имеет наибольшую частоту. Мода:
Графическое построение моды для данной совокупности представлено на рис. 6.3.
Рис. 6.2. Графическое определение моды по гистограмме
Рис. 6.3. Графическое определение моды по гистограмме
Медиана – значение изучаемого признака, приходящееся на середину ранжированной совокупности. При вычислении медианы интервального вариационного ряда сначала находят медианный интервал
, где h – длина медианного интервала. Для этого можно использовать кумулятивное распределение частот или относительных частот. Медианному интервалу соответствует тот, в котором содержится накопленная частота, равная ½. Внутри найденного интервала расчет медианы производится по формуле: , (6.2)где
- медиана; - нижняя граница медианного интервала; - величина медианного интервала; - накопленная частота интервала, предшествующего медианному; - частота медианного интервала; - накопленная частота.Медиану в интервальном ряду можно определить графически. Медиана рассчитывается по кумуляте. Для ее определения из точки на шкале накопленных частот, соответствующей 50%, проводится прямая, параллельная оси абсцисс, до пересечения с кумулятой. Затем из точки пересечения указанной прямой с кумулятой опускается перпендикуляр на ось абсцисс. Абсцисса точки пересечения является медианой.
Рассчитаем медиану для таблицы 3.2. Медианным будет интервал с границами (100 – 1814). Медиана:
Рассчитаем медиану для таблицы 3.4. Медианным будет интервал с границами (2,17 – 19,52). Медиана: