Смекни!
smekni.com

Практическое применение статистических методов (стр. 1 из 4)

Задача № 1

Имеются следующие данные 25 предприятий легкой промышленности по величине балансовой прибыли и объему произведенной продукции:

Таблица 1.1

№ предприятия Объем произведенной продукции, млн. руб. Валовая прибыль,млн. руб.
1 653 45
2 305 11
3 508 33
4 482 27
5 766 55
6 800 64
7 343 14
8 545 37
9 603 41
10 798 59
11 474 28
12 642 43
13 402 23
14 552 35
15 732 54
16 412 26
17 798 58
18 501 30
19 602 41
20 558 36
21 308 12
22 700 50
23 496 29
24 577 38
25 688 49

С целью изучения зависимости между объемом произведенной продукции и валовой прибылью произведите группировку предприятий по объему произведенной продукции (факторный признак), образовав пять групп предприятий с равными интервалами.

По каждой группе и совокупности предприятий подсчитайте:

1) число предприятий;

2) объем произведенной продукции – всего и в среднем на одно предприятие;

3) валовую прибыль – всего и в среднем на одно предприятие.

Результаты представьте в виде групповой таблицы. Сделайте краткие выводы.

Решение:

1. Произведем группировку предприятий по объему произведенной продукции (факторный признак), образовав пять групп предприятий с равными интервалами.

1) Определим размах вариации: R = Xmax- Xmin = 800-305 = 495

2) Длина интервала:

Группировку произведем в таблице 1.2.

Таблица 1.2

№ п/п Группы № банка Объем произведенной продукции, млн. руб. Валовая прибыль, млн. руб.
средний средняя
1 305-404 2 305 339,5 11 15
21 308 12
7 343 14
13 402 23
Итого: 4 1358 60
2 405-503 16 412 473,0 26 28
11 474 28
4 482 27
23 496 29
18 501 30
Итого: 5 2365 140
3 504-602 3 508 557,0 33 36,667
8 545 37
14 552 35
20 558 36
24 577 38
19 602 41
Итого: 6 3342 220
4 603-701 9 603 657,2 41 45,6
12 642 43
1 653 45
25 688 49
22 700 50
Итого: 5 3286 228
5 702-800 15 732 778,8 54 58
5 766 55
10 798 59
17 798 58
6 800 64
Итого: 5 3894 290
Всего: 25 14245 938

Выводы:

Разбив на 5 групп по объему произведенной продукции банки получили, что:

1. Самая многочисленная группа 3, с количеством входящих в неё шести банков, самая малочисленная – 1, в неё входит 4 банка.

2. По объему произведенной продукции в общем и среднем, валовой прибыли и средней валовой прибыли на одно предприятие лидирует пятая группа, а первая – наименее эффективна.

Данные показывают, что при увеличении объема произведенной продукции валовая прибыль увеличивается. Следовательно, между исследуемыми признаками существует прямая корреляционная зависимость.

Задача № 2

Имеются следующие данные по двум заводам, вырабатывающим однородную продукцию:


Таблица 2.1

Номер завода Январь Февраль
затраты времени на единицу продукции, час изготовлено продукции, шт затраты времени на
единицу продукции, час всю продукцию, час
1 2 160 1,8 420
2 2,8 180 2,4 440

Вычислите средние затраты времени на изготовление единицы продукции по двум заводам в январе и феврале. Укажите виды средних величин, используемых в решении задач.

Решение:

Для января статистические данные представлены количеством выпущенной продукции и затратами времени на выпуск единицы продукции, поэтому средние затраты времени на изготовление единицы продукции определяем по формуле средней арифметической взвешенной:

=
,

где х - затраты времени на единицу продукции, час.

f - изготовлено продукции, шт.

=
час.

Для февраля статистические данные представлены затратами времени на весь выпуск продукции и затратами времени на выпуск единицы продукции, поэтому средние затраты времени на изготовление единицы продукции определяем по формуле средней гармонической взвешенной:

=
,

где w – объем признака, равный произведению вариант на частоты: w = x f.

=

На заводе №1 в январе затраты времени на единицу продукции были снижены с 2 до 1,8 часа. На заводе №2 в 1993 г. затраты времени на единицу продукции были снижены с 2,8 до 2,4 часа.

В среднем по двум заводам затраты времени снизились с 2,424 до 2,0,64 часа, что практически обусловлено снижением эффективности производства на заводах.

Задача № 3

В целях изучения стажа рабочих одного из цехов завода проведена 10%-ная механическая выборка, в результате которой получено следующее распределение рабочих по стажу работы:

Таблица 3.1

Стаж рабочих, лет Число рабочих, чел
До 5От 5 до 10От 10 до 15От 15 до 20От 20 до 25Свыше 25 51035251510
Итого 100

На основании этих данных вычислите:

1. Средний стаж рабочих цеха.

2. Средний квадрат отклонений (дисперсию) и среднее квадратическое отклонение.

3. Коэффициент вариации.

4. С вероятностью 0,997 предельную ошибку выборочной средней и возможные границы, в которых ожидается средний стаж рабочих цеха.

5. С вероятностью 0,997 предельную ошибку выборочной доли и границы удельного веса числа рабочих со стажем работы от 10 до 20 лет.

Сделайте выводы.

Решение:

Для вычисления средней величины в каждой группе определяем серединное значение (середину интервала), после чего определяем средний стаж рабочих цеха по формуле средней арифметической взвешенной.

В закрытом интервале серединное значение определяем как полусумму верхней и нижней границ, открытые интервалы приравниваются к рядом стоящим. Кроме того, для расчёта дисперсии последовательно определяем отклонение каждой группы от средней, квадрат отклонения и произведение квадрата отклонения на число работников в группе. Расчёт производим в таблице 3.2.

Таблица 3.2

Расчет среднего квадратического отклонения

Стаж рабочих, лет Число рабочих, чел. f х xf
(
)2
(
)2 f
До 5 5 2,5 12,5 -13,25 175,563 877,813
5-10 10 7,5 75 -8,25 68,0625 680,625
10-15 35 12,5 437,5 -3,25 10,5625 369,688
15-20 25 17,5 437,5 1,75 3,0625 76,5625
20-25 15 22,5 337,5 6,75 45,5625 683,438
св. 25 10 27,5 275 11,75 138,063 1380,63
Итого: 100 - 1575 - - 4068,75

1. Определим средний стаж рабочих цеха:

=
=
= 15,75 лет.

2. Определим среднее квадратическое отклонение:

σ =

= 6,379 лет.

Дисперсия признака σ2 =

= 40,688 лет.

3. Определим коэффициент вариации

V =

%

4. Определим с вероятностью 0,997 предельную ошибку выборочной средней и возможные границы, в которых ожидается средний стаж рабочих цеха.

Так как выборка механическая, то ошибка выборочного наблюдения определяется по формуле:

Δх = t

При

=
3μ и p = w
3μ степень вероятности повышается до 0,997.