Смекни!
smekni.com

Середні величини та показники варіації у правовій статистиці (стр. 1 из 5)

Міністерство освіти і науки України

Курсова робота

на тему:Середні величини та показники варіаціїуправовій статистиці

Харків 2011


Зміст

Вступ

1. Поняттясередньої величини

2. Види середніх величин та техніка їх обчислення

3. Поняття моди та медіани

4. Показники варіації та способи їх обчислення

Висновки

Список літератури


Вступ

Середні величини відносяться до узагальнюючих показників.

У статистиці усі показники розподіляються на індивідуальні та середні. Індивідуальні показники завжди характеризують окремі одиниці сукупності. Усі суспільні явища, в тому числі й правові, мають масовий характер і обов`язково відносяться до статистичних сукупностей. Кожна одиниця сукупності відрізняється від інших її одиниць розмірами ознаки, яка вивчається в процесі дослідження, тому дати узагальнюючу характеристику статистичної сукупності можна тільки за допомогою середніх показників. Наприклад, щоб об`єктивно оцінити, на якому підприємстві вища заробітна плата, слід спочатку обчислити середню заробітну плату на кожному підприємстві і тільки потім їх порівняти.

Закон великих чисел іноді називають законом середньої величини. Дійсно, значення кожної окремої одиниці може істотно змінюватися під впливом різних умов. В нашому прикладі заробітна плата кожного окремого робітника розрізнюється залежно від стажу роботи, рівня кваліфікації, кількості відпрацьованого робочого часу та інших умов. Але якщо проаналізувати середню заробітну плату, то можна встановити тенденції її зміни і різницю в оплаті праці залежно від виду підприємства і проміжку часу, за який наведені дані. Обчислена середня величина характеризує найбільш типові закономірності у розвитку явища, абстрагуючись від тих відхилень, які властиві окремим одиницям сукупності.

Необхідність в обчисленні середньої величини обумовлюється тим, що суспільні явища, які вивчаються й правовою статистикою, завжди носять масовий характер, а ознаки у окремих одиниць сукупності відрізняються одна від одної, інакше кажучи, варіюють. Якщо припустити можливість існування сукупності, в якій у всіх одиниць будуть однакові розміри ознаки, то в такій сукупності середню величину обчислювати безглуздо.


1. Поняття середньої величини

Середня величина в статистиці – це узагальнюючий показник, який характеризує типовий розмір ознаки якісно однорідної сукупності в конкретних умовах простору і часу.

Головною передумовою для обчислення і застосування середніх величин є те, що вони не можуть обчислюватися для різнорідної сукупності. Це визначає, що наукове використання середніх величин базується на поєднанні його з методом групування: спочатку слід поділити сукупність на окремі групи, а лише після цього обчислювати середні величини для якісно однорідних груп сукупності та сукупності в цілому.

Середні величини дуже широко застосовуються для обчислення середнього рівня сукупності, порівняння двох або більше об`єктів, характеристики динаміки явищ, вивчення зв`язку між ними.

У правовій статистиці середні величини використовуються для: обчислення зміни у структурі злочинності; середньої кількості осіб, яка припадає на один злочин, характеристики зміни у середньому віці злочинців по окремих видах злочинів і по усій злочинності в цілому, для характеристики додержання процесуальних строків (середні строки попереднього слідства, розгляду кримінальних, цивільних та адміністративних справ), середньої величини збитків по окремих видах злочинів та інші показники.

Існують різні точки зору на визначення поняття середньої величини. Прихильники діалектичного підходу вважають, що в реальності існують різні індивідуальні одиниці, а середня величина лише абстракція, яка характеризує у загальному вигляді сукупність в цілому. На думку інших вчених, навпаки, – існує лише середня величина, а кожна окрема одиниця, яка відхиляється від середньої, – це атавізм або ненормальний стан. Звісно, що така точка зору значно спрощує статистичний аналіз – не треба вивчати окремі одиниці сукупності, достатньо вивчити лише середні величини та визначити тенденції їх зміни.

Нам здається, що точка зору прихильників діалектичного підходу є більш вірною. Представники багатьох наук вважають, що окрім встановлення елементарних математичних закономірностей, усі науки у своїх дослідженнях повинні виявляти статистичні, а не функціональні закономірності. Лише в елементарній математиці ми можемо одержати точний результат, а вже коли із чотирьох добуваємо квадратний корінь, то одержуємо два результати: зі знаком або мінус два, або плюс два.

Таким чином середній показник має лише оціночне значення. В правовій статистиці, де окремі явища часто є унікальними він ні в якому разі не може підмінювати, і тим більше замінювати, вивчення індивідуального. Крім того, індивідуальні явища характеризують розподіл сукупності і дають змогу встановити одиниці, які істотно відрізняються від інших одиниць.

Щоб встановити їх закономірності та особливості в розвитку явища загальна середня величина, обчислена для усієї сукупності, повинна доповнюватися вивченням середніх по окремих групах, . У правовій статистиці дуже часто загальна середня величина по країні в цілому доповнюється середніми показниками по окремих регіонах. Взагалі середня величина є вельми небезпечним показником. Вона можна не тільки виявити, а і приховати закономірності розвитку явища.

правовий статистика медіана варіація

2. Види середніх величин та техніка їх обчислення

У практиці проведення статистичних досліджень застосовуються різні види середніх величин. Це обумовлено перш за все наявністю вихідних даних і метою дослідження. За технікою обчислення усі середні величини можуть бути прості (незважені) та зважені, за класом всі вони відносяться до степенної середньої. Загальна формула середньої степенної має такий вигляд (перша формула – проста; друга – зважена):


; або
,

де

– степенна середня величина; x– варіанти (значення ознаки одиниць сукупності); n– загальна кількість одиниць сукупності; f– вага, частота, яка показує скільки разів зустрічається те чи інше значення ознаки; m– показник ступеню середньої; Σ – знак суми.

За назвами в статистиці використовуються середня арифметична, середня хронологічна, середня геометрична, середня квадратична величини, середня гармонічна. Зміна значення показника степенної середньої величини (m) визначає вид середньої величини: якщо m= 1, то ми одержуємо середню арифметичну величину; якщо m= 2, то одержуємо середню квадратичну; якщо m= 3, то – середню кубічну; якщоm= - 1,– маємо середню гармонічну; якщо m= 0, то середню геометричну. З степенних середніх в правовій статистиці найчастіше використовують середню арифметичну, значно рідше – середню гармонічну; середня геометрична застосовується лише при обчисленні середніх темпів динаміки, а середня квадратична – при обчисленні показників варіації.

Розмір обчисленої середньої величини завжди відрізняється, оскільки обумовлюється показником степеню середньої величини. В загальному вигляді це правило має назву мажорантності середніх: чим більше показник ступеня, тим більше величина середньої. При цьому слід мати на увазі, що правильну характеристику різних сукупностей в кожному окремому випадку визначає лише певний вид середньої величини. Основний критерій визначення виду середньої величини – це механізм утворення обсягу ознаки, яка варіює. Середня тільки тоді буде вірно відображати усю сукупність, коли при заміні усіх ознак (варіантів) середньою загальний обсяг варіюючої ознаки залишиться незмінним.

Залежно від того, як формується загальний обсяг сукупності, і визначається вид середньої величини. Середня арифметична застосовується тоді, коли обсяг варіючої ознаки утворюється як сума окремих варіантів, середня квадратична – коли обсяг варіючої ознаки має вигляд суми квадратів окремих варіантів, середня гармонічна – коли обсяг варіючої ознаки складається із суми обернених значень окремих варіантів, середня геометрична – коли обсяг варіючої ознаки одержується як добуток окремих варіантів.

У правовій статистиці середні арифметичні величини застосовуються тоді, коли первинні (вихідні) дані наведені у такому вигляді, що загальний обсяг ознаки для усієї сукупності можна одержати шляхом підсумовування їх у всіх одиницях.

Середня арифметична проста (незважена) обчислюється шляхом ділення суми індивідуальних значень ознаки на їх загальну кількість. Спочатку підсумовують значення усіх варіантів, а потім ця сума ділиться на загальну кількість одиниць сукупності. Наприклад, один слідчий районної прокуратури закінчив за місяць 2 справи, інший – три. В результаті у середньому вони закінчили розгляд 2,5 справи ((2+3) : 2). При цьому не можна відкинути 0,5 справи і округлити цифру, тому що в такому разі результат буде помилковий.

Середня арифметична проста використовується дуже рідко, як правило, лише тоді, коли сукупність повністю симетрична (нормальний закон розподілу одиниць) або має невелику кількість одиниць (як в нашому прикладі).

У загальному вигляді середня арифметична проста обчислюється за формулою:


де:

–середня арифметична величина; x– значенняознаки одиниць сукупності; n – кількість варіантів, з яких обчислюється середня (обсяг статистичної сукупності); Σ – знак суми.