де ƒ1,ƒ2, … , ƒn– повторення (частота, вага) кожного варіанта; x1, x2, …, xn–значення ознаки одиниць сукупності; Σ – знак суми.
Середня арифметична зважена завжди обчислюється тоді, коли окремі значення варіантів у сукупності повторюються кілька разів або коли ряд розподілу значення ознаки несиметричний. При обчисленні середньої арифметичної зваженої за наведеною формулою значення кожного варіанта (ознаки кожної одиниці сукупності) слід помножити на відповідну йому вагу (частоту або повторюваність кожного варіанта) і суму цих добутків поділити на суму частот (загальну кількість одиниць сукупності). При цьому перемноження значень ознак сукупності на кількість їх повторювання в сукупності (тобто варіантів на ваги) називається зважуванням, а одержана середня величина – зваженою.
Використання середньої арифметичної зваженої дає змогу замінити багаторазове підсумовування однакових варіантів, як це має місце при обчисленні середньої арифметичної простої.
Отже, за наявності значної кількості первинних даних можна обчислювати середню величину двома способами:
1) шляхом підсумовування значень ознаки у кожної окремої одиниці сукупності – за формулою арифметичної простої;
2) на підставі заздалегідь впорядкованих даних у вигляді варіаційного ряду розподілу – за формулою арифметичної зваженої. При цьому спочатку обов`язково будується варіаційний ряд розподілу, для того щоб бути впевненими, що обчислюється середня для якісно однорідної сукупності.
Обчислимо середню арифметичну зважену за даними табл. 1(первинні дані наведені у вигляді дискретного ряду розподілу).
Таблиця 1.Кількість розглянутих кримінальних справ в місцевому суді
Кількість засуджених по справі, х | Кількість розглянутих справ, ƒ | Добуток,хƒ |
1 | 20 | 20 |
2 | 14 | 28 |
3 | 12 | 36 |
4 | 10 | 40 |
5 | 4 | 20 |
Всього | 60 | 144 |
За допомогою наведеної вище формули одержимо середню кількість засуджених по кримінальній справі: 2, 4 людини (144 : 60).
Середня величина завжди має числове вираження в тих самих одиницях виміру, що й первинні дані. При цьому її розмір обов`язково знаходиться в межах від мінімального до максимального значення ознаки і вона не може бути меншою за мінімальне і більшою за максимальне значення ознаки. Якщо ж з якоїсь причини одержали середню величину, яка істотно відрізняється від варіантів, то слід обчислити її заново.
Округлювати одержані дані можна лише таким чином, щоб не втратити реального змісту показника. Якщо в даному прикладі ми відкинемо десяту частину дробу, то істотно зменшимо результат. Якщо 2 особи помножити на 60 кримінальних справ, одержимо 120 осіб, а в дійсності за цими розглянутими кримінальними справами було засуджено 144 особи, тобто маємо зменшення на 24 особи.
Частіше доводиться обчислювати середні арифметичні зважені з даних, наведених в статистичній звітності у вигляді інтервальних варіаційних рядів розподілу, коли значення варіантів наведено не числом, а в межах інтервалу: від до Наприклад, маємо такі дані про вік засуджених ( табл. 2).
Таблиця 2.Кількість засуджених за віком за злочини проти власності
Вік особи,рік | Кількість засуджених,ƒ | Середина інтервалу, рік, х | Добуток,хƒ |
До 18 | 24 | 15,5 | 372 |
18 – 24 | 48 | 21 | 1008 |
25 – 29 | 30 | 27 | 810 |
30 – 49 | 22 | 39,5 | 869 |
50 і старше | 6 | 59,5 | 357 |
Всього | 130 | _ | 3416 |
Щоб обчислити середній вік усіх 130 осіб, засуджених за злочини проти власності, спочатку необхідно визначити середній вік кожної групи, тому що вік в документах первинного обліку (статистична картка на підсудного) наводиться у вигляді інтервалів. Середній вік для кожної групи умовно приймають, як середину кожного інтервалу. Вона обчислюється як середня арифметична проста умовно, оскільки не завжди однаково зустрічаються в межах групи особи з різним віком. Нижня межа інтервалу першої групи визначається згідно з кримінальним кодексом. Відповідальність за вчинення цих видів злочинів настає з 14 років, таким чином середина першої вікової групи буде дорівнювати 15,5 рокам ((14 + 17) : 2). Аналогічно обчислюється середина усіх інших інтервалів, крім останнього, оскільки в ньому відсутня верхня межа інтервалу. Останній інтервал повністю відкритий. Теоретично особа у будь-якому віці, якщо вона вчинила злочин, може буде засуджена. В такому разі ця межа встановлюється умовно таким чином, щоб інтервал був рівним сусідньому з ним. В нашому прикладі величина передостаннього інтервалу дорівнювала 19 рокам (49 – 30). Відповідно, приймаємо верхню межу останнього інтервалу рівною 69 років (50 + 19), тоді середина становить 59,5 років ((69 + 50) : 2).
Після встановлення середини кожного інтервалу, за наведеною вище формулою середньої арифметичної зваженої обчислюємо середній вік 130 засуджених за злочини проти власності. Він складає 26,3 роки (3416 : 130).
При цьому слід мати на увазі, що середня величина, обчислена за даними інтервального варіаційного ряду розподілу, завжди є наближеною, тому що при її обчисленні робиться припущення про однакові розміри ознаки у кожної одиниці сукупності. Але точних даних одержати неможливо, оскільки в звітності вони наведені у такому вигляді. Звісно, що чим більше величина інтервалу і чим більше одиниць в ньому, тим більше відхилень від дійсної середньої величини можна одержати. Істотно вплинути на розмір середньої величини, обчисленої з інтервального ряду, може й довільне встановлення межі відкритих інтервалів, тому що із підрахунку можуть повністю зникнути найбільш віддаленні значення ознаки.
Середня арифметична, яка обчислюється за даними варіаційного ряду, має ряд властивостей, які мають практичне значення при її обчисленні. Найголовніші властивості такі:
1. Добуток середньої на суму частот завжди дорівнює сумі добутку варіантів на частоти.
2. Якщо від кожного значення варіанта відняти якесь число, то середня арифметична величина зменшиться на теж саме число.
3. Якщо до кожного значення варіанта додати якесь число, то середня арифметична величина збільшиться на теж саме число.
4. Якщо кожне значення варіанта поділити на якесь число, то середня арифметична величина зменшиться на теж саме число разів. Ця властивість дає змогу значно простіше обчислити середню арифметичну величину.
5. Якщо кожне значення варіанта помножити на якесь число, то середня арифметична величина збільшиться на теж саме число разів.
6. Якщо усі частоти (ваги) поділити (або помножити) на якесь число, то середня арифметична величина від цього не зміниться. Цією властивістю часто користуються, коли частоти (ваги) мають вигляд у відсотках до підсумку.
Дуже рідко в правовій статистиці застосовуються середня гармонічна – обернена величина середньої арифметичної із обернених значень варіантів. Застосування середньої арифметичної або гармонічної залежить від первинних даних. Якщо за ваги (частоти) береться не кількість одиниць сукупності, а величини, одержані внаслідок множення значень варіантів на кількість одиниць, тобто зразу маємо добуток хƒ, то в цьому разі обчислюється середня гармонічна. У правовій статистиці, як правило, такі дані не зустрічаються або зустрічаються дуже рідко. В інших галузях статистики ця величина застосовується для обчислення середньої врожайності, середньої продуктивності праці, середнього відсотка виконання плану тощо. До цього часу статистики так і не визначилися, за якою середньою слід обчислювати середній термін будівництва. За правилами математичної статистики (мажорантності середніх величин) середня арифметична завжди більша за середню гармонічну, особливо якщо йдеться про значний розмір показника.
Для розрахунку середньої величини за формулою середньої гармонічної зваженою необхідно виходити з логічного усвідомлення вихідних величин. Наприклад, кількість оштрафованих осіб – це складова частина загальної суми штрафу. Тому щоб встановити середній розмір штрафу (розрахункова величина) ми повинні його обраховувати за формулою середньої гармонічної зваженої.
Але може обчислюватися і середня гармонічна проста за формулою:
Дана формула використовується лише тоді, коли вага кожного варіанта дорівнює одиниці. На практиці таке практично не зустрічається.
Середня гармонічна зважена обчислюється за формулою:
де: Х ¾ значення ознаки, що варіює; М=Xf¾ результат перемноження значення варіантів на їх ваги.
Якщо ми дійсно будемо розраховувати середній розмір стягнутих штрафів тим чи іншим органом або в тій чи іншій місцевості, то знаменник дробу буде мати реальний зміст – кількість оштрафованих осіб, які сплатили штраф.
Техніка обчислення середньої геометричної і середньої хронологічної, які в правовій статистиці застосовуються при обчисленні показників в рядах динаміки, наведена розділі Х цього підручника.
3. Поняття моди та медіани
Крім математично обчислених степенних середніх величин у статистиці застосовуються показники описового характеру – структурні середні, з яких найчастіше використовуються мода та медіана, які у впорядкованому ряду розподілу характеризують значення тенденцій окремих варіантів.
Модою в статистиці називається таке значення ознаки, яке зустрічається найчастіше. Якщо дані розташовані у вигляді дискретного ряду розподілу, то модою буде значення того варіанту, який має найбільшу частоту. Мода в статистиці застосовується тоді, коли слід охарактеризувати показник, який найчастіше зустрічається в сукупності. Наприклад, при вивченні цін на ринку встановлюємо ціни, які зустрічаються найчастіше; при встановленні найбільш ходового розміру взуття і одягу визначаємо той, який користується найбільшим попитом. Ці показники дають змогу спланувати, які товари необхідно виробляти в більшій кількості, а також які товари поставляти на ринок і за якими цінами.