Rмех.л =(Qбр w”o+.pЛ w’o) L/(1000*9.8)(4.1)
где Qбр, Рл- соответственно масса состава поезда брутто и локомотива,
w”o, w’o - основное удельное сопротивление движению соответственно состава поезда и локомотива, Н/т; L - расстояние передвижения по площадке, км.
При четырехосных груженых вагонах на роликовых подшипниках при нагрузке от оси на рельсы qО>6 т основное удельное сопротивление на бесстыковом пути зависит от скорости движения следующим образом:
w"О = 9,81[0,7 +(3 +0,09v +0,002 v2)/qO,(4.2)
где V- ходовая скорость движения поезда, км/ч.
Основное удельное сопротивление локомотивов (электровозов и тепловозов) в тех же условиях
w'О = 9,81[1,9 + 0,008 v + 0,00025 v2](4.3)
Механическая работа локомотива, связанная с преодолением подъемов и сопротивления от кривых (R\ мех.),
Riмех =(Qбр + Рл)ik Li /(1000*9.81)(4.4)
где ik - величина дополнительного удельного сопротивления движению от приведенного уклона (от уклона и кривой), Н/т; Li, - длина пути с удельным сопротивлением ik, км.
Поскольку механическая работа локомотива на преодоление сопротивления движению от приведенного уклона (формула (4.4)) не зависит от скорости движения, то ее в данном исследовании можно не учитывать.
При существующих КПД тепловозов расход топлива gn на 1 т. км механической работы локомотива составляет 0,80 - 0,85 кг. В данном исследовании принимается gn = 0,85 кг/т. км.
Исходя из формул (1) - (3) общая зависимость расхода топлива в кг на 1 км передвижения поезда по площадке на бесстыковом пути (Gn) может быть выражена следующим образом:
Gn = gn {Qбр [9.81*(0,7+(3+0,09v+0,002 v2)/q O+рЛ (1,9 + 0,008v++0,00025 v2)} /(1000*9 81).(4.5)
Результаты расчетов расхода топлива по формуле (4.5) на 1 км пути при массе состава поезда Qбр=4000 т и массе локомотива рЛ = 258 т (2ТЭ10Л) и gO = 16 т для различных скоростей движения поезда приведены в строке 1 таблицы 1, и по ним на рисунке 1 построена кривая 1 зависимости расхода топлива для тяги от скорости движения.
Если ориентироваться при этом только на затраты топлива на механическую работу, то можно заметить, что оптимальной скорости движения поезда не существует (чем ниже скорость движения, тем меньше механическая работа и меньше расход топлива) (рисунок 4.1, кривая 1).
Однако расход топлива на собственные нужды тепловоза в расчете на 1 поездо-км имеет обратную зависимость
qc =GX /v(4.6)
Результаты расчетов по формуле (4.б) расхода топлива на собственные нужды на 1 поездо*км в зависимости от скорости движения поезда приведены в строке 2, а общего расхода топлива - в строке 3 таблицы 4.4 На основании этих данных на рисунке 4.1 построены соответственно кривые 2 и 3.
Таблица 4.4 Затраты дизельного топлива (кг/поездо*км) на передвижение при различных скоростях
Рисунок 4.1-Кривые зависимости расхода топлива от скорости движения поезда.
По данным таблицы 4.4 и суммарной кривой «Всего» уже видно, что оптимальная скорость движения поезда находится на уровне примерно 30 км/ч, при которой достигается минимальный общий расход топлива 6,01 кг/поездо-км. Однако этот оптимум только по расходу топлива.
Для определения с экономической точки зрения оптимума в полном смысле этого слова необходимо учесть в денежном выражении все расходы При этом цену топлива сейчас можно принять 8300 руб /кг Расходы на топливо для тяги в зависимости от скорости движения при тех же исходных данных приведены в графе 2 таблицы 4.5.
Таблица 4.5 Расходы на передвижение при различных ходовых скоростях при массе локомотива Ря = 258 т (2ТЭ10Л)
С энергетическими затратами (расходом топлива для тяги) непосредственно связана также механическая работа локомотива и сил сопротивления движению подвижного состава и пути, вызывающие их физический износ. В условиях равновесия в природе и механике, а также при равновесных ценах в условиях рыночной экономики расходы, связанные с механической работой сил сопротивления, можно принять с достаточной степенью точности равными расходам на топливо для тяги. Эти результаты отражены в графе 3 той же таблицы 4.5, а суммарные - в графе 4. Эти расходы также возрастают с повышением скорости движения.
Вторая часть расходов, связанная со стоимостными параметрами времени (со стоимостью 1 поездо*часа) в расчете на 1 поездо*км, с повышением скорости движения поезда снижается.
Стоимость 1 поездо*часа включает в себя следующие расходы:
- расходы на топливо для собственных нужд локомотива (45,6 • 8,3) =378,5 тыс.руб.;- расходную ставку 1 бригадо-часа локомотивных бригад - 66,0 тыс. руб.;
- расходную ставку на 1 локомотиво-час при 2ТЭ10Л - 85,0 тыс.руб.;
- расходную ставку на 1 составо-час грузового поезда при 60 вагонах в составе поезда (0.4 • 60) = 24,0 тыс.руб.
Общие расходы на 1 поездо-час составят 378,5 + 66,0 + 85,0 + 24,0 = 353,5 тыс.руб.
В расчете на 1 поездо•км эти расходы при различных скоростях движения поезда приведены в графе 5. а суммарные - в графе б таблицы 4.2.
Рисунок 4.2.Зависимость расхода топлива от скорости.
Из данных таблицы 4.5 и рисунка 4.2 видно, что оптимальная по минимуму текущих расходов ходовая скорость движения грузовых поездов находится на уровне 35 км/ч, что значительно выше, чем только при учете затрат топлива (30 км/ч).
Кроме текущих эксплуатационных расходов в некоторых случаях при определении оптимальных скоростей движения грузовых поездов возникает необходимость учитывать еще и приведенные капиталовложения в подвижной состав.
В расчете на 1 поездо-час приведенные капиталовложения в подвижной состав можно рассчитать следующим образом:
где Цл, Цв- цена соответственно локомотива 2ТЭ10Л (50000 млн руб.) и грузового вагона (1100 млн руб.);
т - состав грузовою поезда в вагонах; Е-коэффициент эффективности капиталовложений, принимаемый равным 0,12 Тогда эти приведенные капиталовложения на 1 поездо-час составят
Эпр.п.ч = (50000 + 60 • 1100) • 0,12/(3б5 • 24) = 1,590 млн руб.
Приведенные капиталовложения в расчете на 1 поездо-км при различных скоростях движения приведены в графе 7. а суммарные - в графе 8 таблицы 4.5. По этим данным также построена кривая зависимости приведенных затрат от ходовой скорости движения поезда (см рисунок 4.2). Отсюда видно, что оптимальная скорость движения поезда в этом случае находится уже на уровне 50,0 км/ч.
Таким образом, данные таблицы 4.5 и кривые рисунка 4.2 показывают, что по мере прибавления статей расходов, зависящих от времени, оптимум все время смещается вправо, т. е. оптимальная ходовая скорость движения грузовых поездов на рабочих элементах профиля пути возрастает.
Что касается приведенных капиталовложений в перевозимую товарно-материальную массу, то их влияние на оптимальную ходовую скорость движения грузовых поездов следует, видимо, учитывать отдельно в каждом конкретном случае по требованию собственников этих ценностей в зависимости от ценности перевозимой товарной массы. Естественно, в этом случае соответственно должен возрастать и тариф на перевозку этих товарных масс.
Исходя из рассчитанной для рабочих элементов профиля пути оптимальной средней ходовой скорости движения грузовых поездов с учетом длины каждого перегона могут быть рассчитаны оптимальные поперегонные времена хода поездов в обоих направлениях. Для перегонов с преобладанием спусков, когда средняя ходовая скорость даже без тяги локомотива может приближаться к максимально допустимой (по конструкционным особенностям пути или подвижного состава) и даже требовать движения с подтормаживанием, оптимальное время хода определяется обычным методом тяговых расчетов.
При движении по такому перегону в обратном направлении, т е. с преобладанием крутых подъемов, близких к так называемым «расчетным», оптимальным перегонным временем хода должно быть время хода, определенное в соответствии с тяговыми расчетами
В остальном при разработке графика движения следует приближаться по возможности к оптимальным временам хода грузовых поездов. Однако в зависимости от условий взаимосвязи всех прокладываемых на графике линий («ниток») хода поездов в отдельных случаях может возникать необходимость в сокращении этого времени вплоть до предельного (нормативного) в соответствии с требованиями тяговых расчетов.
4.3 Внедрение запорно-пломбирующего устройства на предприятии
Рисунок 4.3. Внешний вид запорно-пломбирующего устройства.
Преимуществом данного устройства перед аналогичными устройствами подобного назначения является его высокая взломостойкость. После пломбирования вагона данным устройством, открыть вагон злоумышленникам не представляется возможным. Для распечатывания вагонов существуют специальные механизмы находящиеся только у персонала дистанции погрузочно-разгрузочных работ.
Для удовлетворения своих потребностей в данном устройстве предприятие «Минскжелдортранс» использовало покупные ЗПУ. При цене 4.3 $ за штуку, и потребности в 202400 штук в год, предприятие тратило огромные суммы денежных средств на закупку требуемого количества ЗПУ.
Было принято решение внедрить производство данного устройства на самом предприятии. Для определения будет ли внедрение ЗПУ приносить дополнительную прибыль и, соответственно, повышать рентабельность предприятия мною были произведены необходимые расчеты.