для определения ошибки выборочной средней:
для определения ошибки выборочной доли:
Дополнительный множитель
всегда будет меньше 1. Например, при 20%-ой выборке доля выборочной совокупности =0,2, а дополнительный множитель =1,0-0,2=0,8.Покажем расчет ошибки выборочной средней и доли признака по данным, приведенным в табл.1.
Отбор участков в примере производится по схеме бесповторной выборки. Из 300 участков было отобрано 30, т.е. доля участков, попавших в выборочную совокупность составляла
= =0,1 или 10%. Дополнительный множитель =1,0-0,1=0,9.Определим ошибку средней урожайности по участкам, попавшим в выборку:
Полученная величина ошибки выборки показывает, что средняя урожайность на участках, попавших в 10% выборку, может на ±0,12 ц с 1 га отличаться от генеральной средней, или, иначе говоря, можно ожидать, что средняя урожайность в генеральной совокупности будет находится между 15,12 (15+0,12) и 14,88 (15-0,12) ц с 1 га.
Ошибка выборочной доли – доли участков с урожайностью 15 и более центнеров с 1 га:
Полученная величина ошибки выборки показывает, что доля участков с урожайностью 15 ц с 1 га в общем числе участков может отклоняться на ±0,07 от доли участков с подобной урожайностью во всей генеральной совокупности.
Можно ожидать, что доля участков с урожайностью 15 и более ц с 1 га будет находится в генеральной совокупности между 0,80 (0,73+0,07) и 0,66 (0,73-0,07).
При этом возникает вопрос: обязательно ли или лишь с определенной степенью вероятности средняя или доля в генеральной совокупности расположатся в диапазонах, определяемых средней ошибкой выборки, с вероятностью 0,683.
Это нас подводит к еще одному показателю ошибки выборки – предельной ошибки выборки.
Предельная ошибка выборки – показатель, характеризующий диапазон, в котором по обе стороны от выборочной средней или выборочной доли расположатся значения генеральной средней или генеральной доли, гарантируемые с определенной степенью вероятности.
Формула предельной ошибки выборки:
D=tm,
где D (дельта) - величина пред. ошибки выборки с заданной вероятностью;
t – коэффициент доверия, которорму соответствуют вероятности предельной ошибки выборки;
m - средняя ошибка выборки.
Величины вероятности, соответствующие коэффициентам доверия, устанавливаются математической статистикой. Так, например, t = 1 соответствует вероятность 0,683; t = 2 соответствует вероятность 0,954; t = 3 – вероятность 0,997 и т.д.
Если нам надо диапазон, в котором расположатся генеральная средняя и генеральная доля, определить с большой степенью вероятности, то этот диапазон должен быть расширен. Так, например, если мы должны вероятность определения этого диапазона в условиях нашего примера довести до 0,997, то среднюю ошибку выборки надо умножить на t = 3,
D = tm = ± 0,12 ц с 1 га ´ 3 = ± 0,36 ц с 1 га.
Это означает, что с вероятностью, равной 0,997, можно гарантировать, что средняя урожайность генеральной совокупности расположится между 15,36 ц (15,0+0,36) и 14,64 ц с 1 га (15,0 - 0,36).
Формулы предельных ошибок выборки:
при повторном отборе:
а) для средней D = tm = t
,б) для доли D = tm = t
;при бесповторном отборе:
а) для средней D = tm = t
,б) для доли D = tm = t
.4. Определение необходимой численности выборки
Одной из наиболее важных и ответственных задач при организации и проведении выборочного наблюдения является установление необходимой численности выборочной совокупности, т.е. такой ее численности, которая обеспечивала бы получение данных, достаточно правильно отражающих изучаемые свойства генеральной совокупности.
При этом должно быть учтено: 1) с какой степенью точности следует получить предельную ошибку выборки; 2) какова должна быть вероятность того, что будет обеспечена обусловленная точность результатов выборочного наблюдения; 3) степень колеблемости изучаемых свойств в исследуемой генеральной совокупности.
Это значит, что необходимая численность выборки (n) устанавливается в зависимости от размеров предельной ошибки выборки (D), от величины коэффициента доверия (t) и от размеров величины дисперсии (s2).
Сами формулы необходимой численности выборки выводятся из формул предельной ошибки выборки следующим образом:
При повторном отборе:
а) для средней
в формуле предельной ошибки выборки
D = t
обе ее стороны возводим в квадрат
D2 = t2
откуда
D2 =
и затем
n =
Таким образом, необходимая численность выборочной совокупности равна произведению квадрата коэффициента доверия и дисперсии признака, деленному на квадрат предельной ошибки выборки.
б) для доли:
в формуле предельной ошибки выборки:
D = t
;обе ее стороны возводим в квадрат и получим:
D2 = t2
откуда
D2 =
и затем
n =
.Таким образом, в этом случае необходимая численность выборочной совокупности равна произведению квадрата коэффициента доверия и дисперсии доли, деленному на квадрат предельной ошибки выборки.
При бесповторном отборе:
а) для средней
в формуле предельной ошибки выборки
D = t
,после ряда преобразований получаем:
n =
;б) для доли:
из формулы предельной ошибки выборки:
D = t
;после ряда преобразований получаем:
n =
.Пример определения необходимой численности выборочной совокупности исходя из условий повторного отбора. Допустим, что с вероятностью 0,954 требуется определить фактический средний диаметр выпускаемой в одном из цехов детали при условии, что предельная ошибка выборки не должна превышать 0,2 см и зная, что дисперсия размеров диаметра детали составляет 0,5 см. Таким образом:
D = 0,2; s2 = 0,5; t = 2.
В этих условиях:
n =
.Следовательно, на выборку в порядке случайного отбора должно быть отобрано 50 деталей. Если всего произведено 5000 таких деталей, то доля выборки составляет
=0,01 или 1%.Так как в данном примере доля выборки очень небольшая, то расчет, полученный по формуле повторной выборки, может быть применен и для выборки бесповторной. Таким образом, для выборочной проверки должна быть отобрана каждая 100-я деталь.