Курсовая работа
Классификация математических моделей, используемых в экономике и менеджменте
Содержание
Введение
1. Математические модели в экономике и менеджменте
1.1 Классификация экономико-математических моделей
2. Оптимизационное моделирование
2.1 Линейное программирование
2.1.1 Линейное программирование как инструмент математического моделирования экономики
2.1.2 Примеры моделей линейного программирования
2.2 Динамическое программирование
2.2.1 Модель динамического программирования
2.2.2 Принцип оптимальности и уравнение Беллмана
2.2.3 Общее описание процесса моделирования и построения вычислительной схемы динамического программирования
2.2.4 Оптимальное распределение ресурсов
2.2.5 Оптимальное управление запасами
2.2.6 Задача о замене
Заключение
Современная математика характеризуется интенсивным проникновением в другие науки, во многом этот процесс происходит благодаря разделению математики на ряд самостоятельных областей. Математика стала для многих отраслей знаний не только орудием количественного расчёта, но также методом точного исследования и средством предельно чёткой формулировки понятий и проблем. Без современной математики с её развитым логическим и вычислительным аппаратом был бы не возможен прогресс в различных областях человеческой деятельности.
Экономика как наука об объективных причинах функционирования и развития общества пользуется разнообразными количественными характеристиками, а поэтому вобрала в себя большое число математических методов.
Актуальность данной темы состоит в том, что в современной экономике используются оптимизационные методы, которые составляют основу математического программирования, теории игр, сетевого планирования, теории массового обслуживания и других прикладных наук.
Изучение экономических приложений математических дисциплин, составляющих основу актуальной экономической математики, позволяет приобрести некоторые навыки решения экономических задач и расширить знания в этой области.
Целью данной работы является изучение некоторых оптимизационных методов, применяемых при решении экономической задач.
Математические модели в экономике. Широкое использование математических моделей является важным направлением совершенствования экономического анализа. Конкретизация данных или представление их в виде математической модели помогает выбрать наименее трудоёмкий путь решения, повышает эффективность анализа.
Все экономические задачи, решаемые с применением линейного программирования отличаются альтернативностью решения и определенными ограничивающими условиями. Решить такую задачу - значит выбрать из всех допустимо возможных (альтернативных) вариантов лучший, оптимальный. Важность и ценность использования в экономике метода линейного программирования состоят в том, что оптимальный вариант выбирается из достаточно значительного количества альтернативных вариантов.
Самыми существенными моментами при постановке и решении экономических задачах в виде математической модели являются:
· адекватность экономико-математической модели действительности;
· анализ закономерностей, соответствующих данному процессу;
· определение методов, с помощью которых можно решить задачу;
· анализ полученных результатов или подведение итога.
Под экономическим анализом понимается прежде всего факторный анализ.
Пусть y=f(xi) - некоторая функция, характеризующая изменение показателя или процесса; x1,x2,…,xn- факторы, от которых зависит функция y=f(xi). Задана функциональная детерминированная связь показателя y с набором факторов . Пусть показатель y изменился за анализируемый период. Требуется определить, какой частью численное приращение функции y=f(x1,x2,…,xn) обязано приращению каждого фактора.
Можно выделить в экономическом анализе - анализ влияния производительности труда и численности работающих на объем произведенной продукции; анализ влияния величины прибыли основных производственных фондов и нормируемых оборотных средств на уровень рентабельности; анализ влияния заемных средств на маневренность и независимость предприятия и т. п..
В экономическом анализе, кроме задач, сводящихся к разбиению его на составляющие части, существует группа задач, где требуется функционально увязать ряд экономических характеристик, т.е. построить функцию, содержащую в себе основное качество всех рассматриваемых экономических показателей.
В этом случае ставится обратная задача- так называемая задача обратного факторного анализа.
Пусть имеется набор показателей x1,x2,…,xn, характеризующих некоторый экономический процесс F. Каждый из показателей характеризует этот процесс. Требуется построить функцию f(xi) изменения процесса F, содержащую основные характеристики всех показателей x1,x2,…,xn
Главный момент в экономическом анализе - определение критерия, по которому будут сравниваться различные варианты решения.
Математические модели в менеджменте. Во всех сферах человеческой деятельности большую роль играет принятие решений. Для постановки задачи принятия решения необходимо выполнить два условия:
· наличие выбора;
· выбор варианта по определенному принципу.
Известны два принципа выбора решения: волевой и критериальный.
Волевой выбор, наиболее часто используемый, применяют при отсутствии формализованных моделей как единственно возможный.
Критериальный выбор заключается в принятии некоторого критерия и сравнении возможных вариантов по этому критерию, Вариант, для которого принятый критерий принимает наилучшее решение, называют оптимальным, а задачу принятия наилучшего решения – задачей оптимизации.
Критерий оптимизации называют целевой функцией.
Любую задачу, решение которой сводится к нахождению максимума или минимума целевой функции, называют экстремальной задачей.
Задачи менеджмента связаны с нахождением условного экстремума целевой функции при известных ограничениях, накладываемых на ее переменные.
В качестве целевой функции при решении различных оптимизационных задач принимают количество или стоимость выпускаемой продукции, затрат на производство, сумму прибыли и т.п. Ограничения обычно касаются людских материальных, денежных ресурсов.
Оптимизационные задачи менеджмента, различные по своему содержанию и реализуемые с использованием стандартных программных продуктов, соответствуют тому или иному классу экономико-математических моделей.
Рассмотрим классификацию некоторых основных задач оптимизации, реализуемых менеджментом на производстве.
Классификация задач оптимизации по функции управления:
Функция управления | Задачи оптимизации | Класс экономико-математических моделей |
Техническая и организационная подготовка производства | Моделирование состава изделий;Оптимизация состава марок, шихты, смесей;Оптимизация раскроя листового материала, проката;Оптимизация распределения ресурсов в сетевых моделях комплексов работ;Оптимизация планировок предприятий, производств и оборудования;Оптимизация маршрута изготовления изделий;Оптимизация технологий и технологических режимов. | Теория графовЦелочисленное программированиеДискретное программированиеЛинейное программированиеСетевое планирование и управлениеИмитационное моделированиеДинамическое программированиеНелинейное программирование |
Технико-экономическое планирование | Построение сводного плана и прогнозирование показателей развития предприятия;Оптимизация портфеля заказов и производственной программы;Оптимизация распределения производственной программы по плановым периодам. | Матричные балансовые модели “Затраты-выпуск”Корреляционно-регрессионный анализЭкстраполяция тенденцийЛинейное программирование |
Оперативное управление основным производством | Оптимизация календарно-плановых нормативов;Календарные задачи;Оптимизация стандарт-планов;Оптимизация краткосрочных планов производств. | Нелинейное программированиеИмитационное моделированиеЛинейное программированиеЦелочисленное программирование |
Сочетание различных элементов модели приводит к различным классам задач оптимизации:
Исходные данные | Переменные | Зависимости | Задача |
Детерминированные | Непрерывные | Линейные | Линейного программирования |
Целочисленные | Линейные | Целочисленного программирования | |
Непрерывные, целочисленные | Нелинейные | Нелинейного программирования | |
Случайные | Непрерывные | Линейные | Стохастического программирования |
Существует значительное разнообразие видов, типов экономико-математических моделей, необходимых для использования в управлении экономическими объектами и процессами. Экономико-математические модели подразделяются на макроэкономические и микроэкономические в зависимости от уровня моделируемого объекта управления, динамические, которые характеризуют изменения объекта управления во времени, и статические, которые описывают взаимосвязи между разными параметрами, показателями объекта именно в то время. Дискретные модели отображают состояние объекта управления в отдельные, фиксированные моменты времени. Имитационными называют экономико-математические модели, используемые с целью имитации управляемых экономических объектов и процессов с применением средств информационной и вычислительной техники. По типу математического аппарата, применяемого в моделях, выделяются экономико-статистические, модели линейного и нелинейного программирования, матричные модели, сетевые модели.