Смекни!
smekni.com

Классификация математических моделей, используемых в экономике и менеджменте (стр. 9 из 11)

Задача носит дискретный характер. Для упрощения, поскольку расход и пополнение кратны 50, расчеты будем вести в целых партиях. Таким образом, d1 = 3, d2=l, d3 = 2, d4 = 2, переменные xhи параметры

меняются с шагом в единицу. Вычисления выполняем в соответствии с моделью, приведенной в задаче 1. Как обычно, при выполнении первого этапа расчеты производим в таблицах: основной (табл. 3) и вспомогательных (табл. 4—7).

Для 1-го шага имеем единственное значение

. Поэтому

Прежде чем перейти к табулированию, определим предельные значения для параметров состояния. Так как

, то даже при
должно быть
, следовательно,
. Соответственно

В заключение настоящей главы рассмотрим тип задач, названных выше задачами складирования.

Особенностью этих задач является наличие двух переменных управления (двумерная модель). Однако решение этих задач значительно упрощается благодаря линейности целевой функции.

Задача 3. Емкость склада по хранению запасов ограничена некоторой величиной с. В каждом из п промежутков времени запасы могут пополняться с затратами

на единицу продукции и расходоваться с получением дохода
за единицу продукции, причем решение о пополнении или расходовании запасов принимается однократно в каждом промежутке времени. Определить оптимальную стратегию в управлении запасами из условия максимизации суммарной прибыли при заданном начальном уровне запасов.

Уточним постановку задачи. Возможны три варианта в очередности пополнения и расходования запасов в каждом из промежутков времени: I вариант — пополнение предшествует расходу; II вариант — расход предшествует пополнению и III вариант — очередность любая.

В III варианте выбор оптимальной стратегии означает не только определение размера пополнения и расхода, но и выбор оптимальной очередности в каждом из промежутков времени.

Указанные варианты условия отразятся на форме ограничений модели задачи.

Составим динамическую модель задачи. Рассмотрим n-шаговый процесс, понимая под k-м шагом промежуток времени, в котором принимается решение о пополнении или расходовании запасов (k = 1, 2,..., п).

В качестве параметров состояния

примем запас товаров в начале k-гoшага. Переменными управления служат размеры пополнения (хк) и расхода (ук) запасов на k-м шаге. Тогда уравнение состояния, выражающее материальный баланс запасов, запишется в виде

(5.11)

Будем решать задачу с помощью обратной вычислительной схемы, т. е. используя рекуррентные соотношения в виде

(5.12)

(5.13)

Переменные задачи должны удовлетворять условиям неотрицательности:

(5.14)

и дополнительным ограничениям для всех k, зависящих от варианта постановки задачи:

(5.15)

(5.15’)

III вариант: или (5.15), или (5.15').

Первые неравенства в (5.15) и (5.15') диктуются ограниченной емкостью склада, вторые — условием, согласно которому расход не может превышать наличные запасы. Для III варианта альтернативные условия означают, что если будет принято решение сначала пополнить запасы, а затем их расходовать, то должны выполняться условия (5.15); если же будет принят противоположный порядок, то должны выполняться условия (5.15').

Решение задач условной максимизации по двум переменным согласно рекуррентным соотношениям (5.12) и (5.13) в общем случае представляет собой сложную задачу, однако линейность функций


и

максимумы которых определяются на каждом шаге, а также ограничений, налагаемых на переменные, позволяет значительно упростить решение всех этих частных задач.

Рассмотрим подробнее решение задачи в I варианте постановки. Ограничения (5.14) и (5.15) определяют при данном значении параметра

область допустимых значений Хkи Ук в виде выпуклого четырехугольника ABCD, изображенную на рис. 6. Так как в этой области максимизируется линейная функция, то получается задача линейного программирования, оптимальное решение которой достигается, по крайней мере, в одной из вершин области. На рис. 6 находим координаты всех четырех вершин:
. Поэтому вместо нахождения максимума по соотношениям (3.12) и (3.13) при произвольных изменениях
достаточно вычислить значения выражений, содержащихся в фигурных скобках, во всех четырех вершинах и путем сравнения выбрать среди них наибольшее.

При этом для последнего (n-го) шага можно ограничиться выбором из двух альтернатив, так как значение

в точках А и Dдает заведомо меньшее число, чем соответственно в точках В ч С.

Итак, для n-го шага получаем

(5.12’)

Для выполнения оптимизации на последующих шагах предварительно найдем из уравнения (5.11) значение

для каждой точки. Тогда получим:
в точке А;
в точке
в точке
в точке D. Вместо соотношения (5.13) получаем

(5.13’)

При выполнении практических расчетов оказывается достаточным не табулировать функции

Для всех значений
, а ограничиться вычислением этих функций лишь для крайних значений
т. е. для

В случае II варианта исходной постановки задачи получим область, изображенную на рис. 7. В новой области изменятся лишь координаты вершины С; находим

. Аналогично предыдущему получим следующие формулы для выполнения условной максимизации:

(5.12’’)

(5.13’’)

Наконец, при III варианте постановки задачи на каждом шаге мы должны выбрать наибольшее число по формулам (3.12'), (3.13') и сравнить его с наибольшим числом, найденным по формулам (3.12"), (3.13"). Сопоставив полученные таким образом два значения

выбираем из них наибольшее. Это и есть окончательное выражение для
Одновременно, в зависимости от того, к какому из вариантов относится найденный максимум, устанавливается выгодная на данном шаге очередность пополнения и расхода запасов.

Поскольку выражение (3.12") содержится среди альтернатив выбора по формуле (3.12'), для k-го шага достаточно производить выбор только по соотношению (3.12').

Аналогично, так как среди четырех альтернатив в формуле (3.13") только третья альтернатива отличается от выбираемых по формуле (3.13'), то достаточно производить выбор по формуле (3.13'), добавив пятую альтернативу.