В дальнейшем будем исходить из биномиальной модели выборки, согласно которой число дефектных единиц продукции в выборке объема n имеет биномиальное распределение с параметрами n и p, где p - входной уровень дефектности. Как хорошо известно, эта модель является приближением для модели простой случайной выборки из партии, согласно которой указанное число имеет гипергеометрическое распределение. Напомним, что гипергеометрическая модель переходит в биномиальную, если объем партии безгранично возрастает, а доля дефектных единиц продукции в партии приближается к p. Если объем выборки составляет не более 10% объема партии, то с достаточной для практики точностью принимают, что соответствующее биномиальное распределение хорошо приближает гипергеометрическое.
Примем обычное предположение о том, что риск потребителя равен 0,10. Как известно, браковочный уровень дефектности pбр для плана (n,0) определяется из условия
(1 - pбр )n = 0,10 .
Это соотношение дает возможность по заданному браковочному уровню дефектности pбр найти необходимый объем выборки:
n = ln 0,10 / ln (1 - pбр ) = - 2,30 / ln (1 - pбр ) .
Поскольку в силу сказанного ранее представляют интерес малые значения браковочного уровня дефектности, воспользуемся тем, что при малых x согласно правилам математического анализа
ln (1 + x) = x + O (x2) .
Вторым слагаемым в правой части последней формулы, как обычно в асимптотических рассуждениях, можно пренебречь. Следовательно, необходимый объем выборки с достаточной точностью может быть найден по формуле
n = 2,30 / pбр .(15)
(При конкретных расчетах надо, очевидно, правую часть округлить до ближайшего целого числа.) Например, при довольно низком (с точки зрения мирового рынка) качестве выпускаемой продукции можно задать pбр = 0,01, т.е. потребовать, чтобы почти все (точнее, не менее 90%) партии, в которых дефектных единиц больше, чем 1 из 100, были забракованы и не достигли потребителя. Тогда объем контроля должен составлять не менее n = 230.
Основной парадокс теории статистического приемочного контроля. Как следует из сказанного выше, необходимый объем выборки, определяемый для какого-либо плана контроля по заданному браковочному уровню дефектности pбр , будет не меньше, чем для плана (n,0), т.е. не меньше, чем 2,30 / pбр .Таким образом, если достигнут достаточно высокий уровень качества, такой, что потребителю может попасть не более 1 дефектной единицы продукции из 10000, т.е. pбр = 0,0001, то объем контроля должен быть не меньше n = 23000. Если же качество повысится в 100 раз, т.е. потребителю сможет попасть не более 1 дефектной единицы продукции из 1000000, то объем контроля и затраты на него возрастут также в 100 раз, и минимально необходимый объем контроля составит 2,3 миллиона единиц продукции. Поскольку объем партий большинства видов продукции существенно меньше этого числа, то проведенные выше расчеты говорят о необходимости перехода на сплошной контроль.
Итак, выводы парадоксальны: если качество выпускаемой продукции не очень хорошее, то целесообразно проводить статистический (выборочный) контроль, если же качество возрастает, то объем контроля и затраты на него увеличиваются, вплоть до перехода на сплошной контроль. Если это возможно, т.е. контроль не является разрушающим. А если невозможно, то попадаем в тупиковую ситуацию - высокое качество не может быть подтверждено.
В реальных ситуациях объемы контролируемых выборок - единицы или десятки, но обычно отнюдь не сотни и тысячи. Если контролируются 100 изделий, то согласно формуле (15) браковочный уровень дефектности равен 2,3 %. И это - предел для реально используемых объемов контроля. Следовательно, статистический приемочный контроль (в том числе выходной или входной) может быть применен для контроля лишь такой продукции, в которой из 50 изделий хотя бы одно дефектно. Другими словами, этот метод управления качеством предназначен лишь для продукции сравнительно низкого качества (входной уровень дефектности не менее 1-2%) или при обслуживании потребителя, согласного на довольно высокий браковочный уровень дефектности (не менее 2,3%).
Следовательно, для повышения качества необходимо использовать контрольные карты и другие методы статистического регулирования технологических процессов на предприятии (о них подробно рассказано, например, в монографиях [1,10]), методы "всеобщего (в другом переводе - тотального) контроля качества" и др. Недаром этим методам уделяется больше внимания в зарубежных методических изданиях, чем собственно статистическому приемочному контролю.
От контроля к пополнению партии. Рассмотрим простую идею: отказываемся от контроля качества вообще, но зато по первому требованию потребителя заменяем дефектную единицу продукции на новую. При этом экономим на контроле, но вместо этого тратим средства на замену продукции. Выгодно это или не выгодно?
Замена продукции может проводиться различными способами. Для многих видов товаров народного потребления это делается с помощью системы гарантийного обслуживания, гарантийных сроков и мастерских, через сеть розничной торговли и т.д.
Другой вариант - к партии поставляемой продукции добавляется некоторое количество единиц продукции для замены имеющихся, возможно, в ней дефектных единиц. Сначала обсудим подробнее именно этот вариант идеи замены продукции.
Пусть поставщик выпускает продукцию с известным ему уровнем дефектности p. Тогда число Х дефектных единиц в партии объема N имеет биномиальное распределение с параметрами N и p. По теореме Муавра-Лапласа Х не превосходит (при достаточно большом N) величины
D0(t) = Np + t (Np(1-p))1/2
с вероятностью Ф(t). где Ф(.) - функция стандартного нормального распределения с математическим ожиданием 0 и дисперсией 1. Поскольку Ф(4) = 0,999968329, то для практических целей достаточно положить t = 4, при этом более чем D0(4) дефектных единиц продукции попадет в партию лишь в 3 случаях из 100000.
Пусть С0 - цена одной единицы продукции, С1 - стоимость неразрушающего контроля одной единицы продукции (с исправлением дефектов при их обнаружении). Сравним сначала две стратегии технико-экономических отношений поставщика с потребителями:
сплошной контроль (затраты С1N)
и пополнение партии дополнительными изделиями в числе D0(4) (затраты С0D0(4) ). Вторая стратегия лучше (экономически выгоднее), если
(16)Поделим на
получим равносильное неравенство .Поскольку p(1-p) не превосходит 1/4 при всех p, то из неравенства
С1/С0 > p + 2 / N1/ 2 (17)
вытекает неравенство (16). Ясно, что в случае, если
С1/С0 > p ,
неравенство (17) (а потому и неравенство (16)) выполняется при достаточно больших объемах партии, а именно, при
N > {2 С0 / (С1 - С0 p)} 2 .
Например, если стоимость контроля составляет 10% от стоимости продукции (типовая ситуация в машиностроении), т.е. С1/С0 = 0,1, а уровень дефектности p = 0,01, то последнее неравенство дает N>493. В то же время нетрудно проверить, что неравенство (16) выполняется при
0,1 > 0.01 + 4 (0.01*0,99)1/ 2 / N1/ 2 ,
т.е. при N > 19. Расхождение более чем на порядок (в 26 раз) объясняется заменой при переходе от формулы (16) к формуле (17) величины p(1-p) на 1/4, т.е. на гораздо большую величину - при малом входном уровне дефектности p.
Выгодно ли введение статистического контроля? Пусть рассматривается описанная выше стратегия пополнения партий. Мы сравнивали ее со стратегией сплошного контроля, которая во многих случаях оказалась хуже. Может быть, поставщику имеет смысл использовать статистический контроль? Понятно, что речь может идти лишь о (неразрушающем) контроле с разбраковкой, поскольку только в этом случае меняется доля дефектности в потоке партий, направляемых потребителям.
Пусть используется план (n,0) с приемочным уровнем дефектности, равным реально достигнутому предприятием уровню дефектности p. Как известно, тогда объем выборки определяется из условия
(1-p)n = 0,95,
т.е.
n = ln 0,95 / ln (1 - p ) = - 0,0513 / ln (1 - p ) .
При малом p уже не раз применявшееся соотношение из математического анализа дает с достаточной для практики точностью
n = 0,05 / p .
С вероятностью (1-p)n = 0,95 партия принимается, с вероятностью 0,05 подвергается разбраковке. В первом случае партия поступает к потребителю с тем же уровнем дефектности, что и до контроля, но при этом добавляются затраты на контроль, равные С1n. Партию необходимо пополнить D0(4) изделиями (затраты С0D0(4)), общие затраты (в среднем на одну выпущенную партию) равны