Смекни!
smekni.com

Эконометрические методы управления качеством и сертификации продукции (стр. 2 из 13)

Зачем нужен выборочный контроль? Чтобы проверить качество спички - надо чиркнуть ею. Загорится - должное качество, не загорится - брак. Но повторно однажды зажженную спичку использовать уже нельзя. Поэтому партию спичек можно контролировать только выборочно. Партии консервов, лампочек, патронов - тоже. Т.е. при разрушающем контроле необходимо пользоваться выборочными методами и судить о качестве партии продукции по результатам контроля её части - выборки.

Выборочные методы контроля могут применяться и из экономических соображений, когда стоимость контроля высока по сравнению со стоимостью изделия. Например, вряд ли целесообразно визуально проверять качество каждой скрепки в каждой коробке.

Для проведения выборочного контроля необходимо сформировать выборку, выбрать план контроля. А если план имеется - полезно знать его свойства. Анализ и синтез планов проводят с помощью математического моделирования на основе теории вероятностей и математической статистики, применяя компьютерные диалоговые системы (пакеты программ).

Зачем нужны диалоговые системы по статистическому контролю? Раньше, действительно, ОТК формально применяли планы контроля из ГОСТов на конкретную продукцию, а реальное качество выпускаемых изделий никого не интересовало. Сейчас - ситуация начинает меняться. С декабря 1990 г. обязательность большинства ГОСТов отменена (в части основных показателей качества, кроме показателей безопасности). У промышленности сняты кандалы. Но - со становлением рыночной экономики появляются конкуренты. В том числе зарубежные. Руководителям производства приходится отлаживать систему контроля качества не для галочки, не по приказу обкома, а для повышения доходов предприятий. А потому - и собственных тоже.

Компьютерные диалоговые системы позволяют прежде всего проводить анализ и синтез планов контроля. Пусть перед Вами - прежний ГОСТ на продукцию, в нем есть раздел "Правила приемки" с планами контроля. Хороша эта система планов или плоха? С помощью диалоговых систем Вы найдете характеристики конкретного плана, приемочный и браковочный уровни дефектности (см. ниже) и т.д. Можно провести и синтез планов, т.е. компьютер подберет план, удовлетворяющий Вашим условиям.

Российской ассоциацией статистических методов были проанализированы сотни стандартов на конкретную продукцию (разделы "Правила приемки") и ГОСТы по статистическим методам. Обнаружено, что более половины и тех и других стандартов содержат грубые ошибки, пользоваться ими нельзя. Причины этого печального положения проанализированы в статье [4]. В отличие от ГОСТов, диалоговым системам ЦСМИ по статистическому контролю верить можно и нужно. И экономически выгодно. По оценкам, полученным в работе [6], применение современных статистических методов позволяет в среднем вдвое сократить трудозатраты на контрольные операции (как известно, на них расходуют примерно 10% от стоимости машиностроительной продукции). Следовательно, от внедрения современных эконометрических методов обеспечения качества продукции Россия может получить более 5 миллиардов долларов США дополнительного дохода в год.

Приведем ещё два сообщения о высокой экономической эффективности статистического контроля. "Мы документально зафиксировали экономию от применения методов статистического контроля и методов разрешения проблем, которым обучили наших сотрудников. Мы приближаемся к степени окупаемости около 30 долларов на 1 вложенный доллар. Вот почему мы получили такую серьезную поддержку от высшего руководства", - сообщает Билл Виггенхорн, ответственный за подготовку специалистов фирмы "Моторола" (цитируем по статье [7]).

По подсчетам профессора Массачусетского технологического института Фримена (см. монографию [8]), только статистический приемочный контроль давал промышленности США 4 миллиарда долларов в 1958 г. (это более 20 миллиарда долларов в ценах 2001 г.), т.е. 0,8% ВВП - Валового Внутреннего Продукта.

На наш взгляд, российским предпринимателям и менеджерам промышленных предприятий целесообразно равняться на японских коллег - знать хотя бы основы статистических методов, т.е. эконометрики, и активно их применять, постоянно консультируясь со специалистами-эконометриками.

Основы статистического контроля. Выборочный контроль, построенный на научной основе, т.е. исходящий из теории вероятностей и математической статистики, называют статистическим контролем. Предпринимателя и менеджера выборочный контроль может интересовать не только в связи с качеством продукции, но и в связи, например, с контролем экологической обстановки, поскольку зафиксированные государственными органами экологические нарушения влекут штрафы и иные "неприятные" последствия. Обсудим основные подходы статистического контроля.

При статистическом контроле решение о генеральной совокупности – об экологической обстановке в данном регионе или о партии продукции - принимается по выборке, состоящей из некоторого количества единиц (единиц экологического контроля или единиц продукции). Следовательно, выборка должна представлять партию, т.е. быть репрезентативной (представительной). Как эти слова понимать, как проверить репрезентативность? Ответ может быть дан лишь в терминах вероятностных моделей выборки.

Наиболее распространенными являются две вероятностные модели—биномиальная и гипергеометрическая. В биномиальной модели предполагается, что результаты контроля n единиц можно рассматривать как совокупность n независимых одинаково распределенных случайных величин Х1, Х2,....,Хn , где Хi = 1, если i‑ое измерение показывает, что есть нарушение, т.е. превышено ПДК (предельная норма концентрации) или i‑ое изделие дефектно, и Хi= 0, если это не так. Тогда число Х превышений ПДК или дефектных единиц продукции в партии равно

Х= Х1+ Х2+...+ Хn .(1)

Из формулы (1) и Центральной Предельной Теоремы теории вероятностей вытекает, что при увеличении объема выборки n распределение Х сближается с нормальным распределением. Известно, что распределение Х имеет вид

Р( Х= k) = Cnk pk (1—p)n-k , (2)

где Cnk - число сочетаний из n элементов по k, а p —уровень дефектности (в другой предметной области - доля превышений ПДК в генеральной совокупности), т.е. p = Р( Хi= 1). Формула (2) задает так называемое биномиальное распределение.

Гипергеометрическое распределение соответствует случайному отбору единиц в выборку. Пусть среди N единиц, составляющих генеральную совокупность, имеется D дефектных. Случайность отбора означает, что каждая единица имеет одинаковые шансы попасть в выборку. Мало того, ни одна пара единиц не должна иметь при отборе в выборку преимущества перед любой другой парой. То же самое —для троек, четверок и т.д. Это условие выполнено тогда и только тогда, когда каждое из

сочетаний по n единиц из N имеет одинаковые шансы быть отобранным в качестве выборки. Вероятность того, что будет отобрано заранее заданное сочетание, равна, очевидно, 1/
.

Отбор случайной выборки согласно описанным правилам организуют при проведении различных лотерей. Пусть Y —число дефектных единиц в случайной выборке, организованной таким образом. Известно, что тогда P (Y = k) – гипергеометрическое распределение, т.е.

(3)

Замечательный математический результат состоит в том, что биномиальная и гипергеометрическая модели весьма близки, когда объем генеральной совокупности (партии) по крайней мере в 10 раз превышает объем выборки. Другими словами, можно принять, что

Р( Х = k) = P ( Y = k ),(4)

если объем выборки мал по сравнению с объемом партии. При этом в качестве p в формуле (4) берут D/N. Близость результатов, получаемых с помощью биномиальной и гипергеометрической моделей, весьма важна с философской точки зрения. Дело в том, что эти модели исходят из принципиально различных философских предпосылок. В биномиальной модели случайность присуща каждой единице - она с какой-то вероятностью дефектна, а с какой-то - годна. В то же время в гипергеометрической модели качество определенной единицы детерминировано, задано, а случайность проявляется лишь в отборе, вносится экологом или экономистом при составлении выборки. В науках о человеке противоречие между аналогичными моделями выборки еще более выражено. Биномиальная модель предполагает, что поведение человека, в частности, выбор им определенного варианта при ответе на вопрос, определяется с участием случайных причин. Например, человек может случайно сказать «да», случайно—«нет». Некоторые философы отрицают присущую человеку случайность. Они верят в причинность и считают поведение конкретного человека практически полностью детерминированным. Поэтому они принимают гипергеометрическую модель и считают, что случайность отличия ответов в выборке от ответов во всей генеральной совокупности определяется всецело случайностью, вносимой при отборе единиц наблюдения в выборку.

Соотношение (4) показывают, что во многих случаях нет необходимости принимать чью-либо сторону в этом споре, поскольку обе модели дают близкие численные результаты. Отличия проявляются при обсуждении вопроса о том, какую выборку считать представительной. Является ли таковой выборка, составленная из 20 изделий, лежащих сверху в первом вскрытом ящике? В биномиальной модели - да, в гипергеометрической - нет.