Відносні величини структури характеризують склад досліджувальної сукупності. Зіставляючи струкутру однієї і тої ж сукупності за різні періоди часу, можна простежити за структурними змінами.
Однією з кількісних характеристик статистичних закономірностей є середня величина, яка здатна відобразити характерний рівень ознаки, притаманої усім елементам сукупності. Варіація будь-якої ознаки формується під впливом двох груп причин – основних, визначальних, які тісно пов’язані з природою самого явища, і другорядних, випадкових для сукупності в цілому.
Характерний, типовий рівень ознаки формується під впливом першої групи причин. Відхилення індивідуальних значень ознаки від типового зумовлені дією другорядних причин, які урівноважуються і тому на рівень середньої істотно не впливають. Середня характеризує типовий рівень варіаційної ознаки. Вона відображує в собі те спільне, характерне, що об’єднує всю масу елементів, тобто статистичну сукупність. Проте слід пам’ятати, що середня відображає типовий рівень ознаки лише в тому випадку, коли статистична сукупність, за якою вона обчислюється, якісно однорідна. Це одна з основних умов наукового застосування середніх у статистиці. Крім того, типовий рівень ознаки, що вивчається, проявляє себе лише у випадку узагальнення масових фактів. В цьому проявляється дія закону великих чисел [9].
За допомогою середніх величин масу елементів можна охарактеризувати одним числом, не зважаючи на те, що середня величина абстрактна і може не збігатися з жодним з індивідуальних значень ознаки. Вона відображає те загальне, типове для маси явищ, яке реально існує в конкретних умовах простору і часу. За допомогою середніх можна здійснити порівняльний аналіз кількох сукупностей, дати характеристику закономірностей розвитку соціально-економічних явищ і процесів. Не слід змішувати середні з відносними величинами інтенсивності. Середня завжди узагальнює кількісну варіацію ознаки, яка тією чи іншою мірою властива всім без винятку елементам сукупності.
Статистична середня – одна з найважливіших кількісно-якісних категорій, яку широко використовують у планово-аналітичній роботі підприємств і організацій. Поширення набуло обчислення таких показників, як середня врожайність, середня заробітна плата, середній рівень продуктивності праці та інше.
При вивченні закономірностей розподілу застосовують середню арифметичну, варіації – середня квадратичну, інтенсивності розвитку – середню геометричну. Вибір середньої має ґрунтуватися на всебічному теоретичному аналізі суті явищ та наявній інформації. Середня лише тоді може бути справжньою узагальнюючою характеристикою, коли при заміні нею всіх варіантів загальний обсяг варіаційної ознаки залишиться незмінним. Отже, залежно від того, що являє собою загальний обсяг варіаційної ознаки, в кожному конкретному випадку обирають вид середньої.
Варіація, тобто коливання, мінливість значень будь-якої ознаки є властивістю статистичної сукупності. Вона зумовлена дією безлічі взаємопов’язаних причин, серед яких є основні і другорядні. Основні причини формують центр розподілу, другорядні – його варіацію ознак, сукупна їх дія – форму розподілу.
Статистичні характеристики центру розподілу (середня, мода, медіана) відіграють важливу роль у вивченні статистичних сукупностей. В одних сукупностях індивідуальні значення ознаки значно відхиляються від центру розподілу, в інших – тісно групуються навколо нього, а відтак виникає потреба оцінити поряд з характеристиками центру розподілу міру і ступінь варіації. Чим менше варіація, тим однорідніша сукупність, отже, тим більш надійні і типові характеристики центру розподілу, насамперед середні величини.
Вивчення варіації має велике значення для оцінки сталості та диференціації соціально-економічних явищ, при використанні вибіркового та інших статистичних методів.
Середнє відбиває те загальне, що складається в кожному окремому, одиничному об'єкті завдяки цьому середня одержує велике значення для виявлення закономірностей властивим масовим суспільним явищам і непомітних в одиничних явищах. Середня відображає об'єктивну властивість явища. У дійсності часто існує тільки відхилені явища, і середня як явище може і не існувати, хоча поняття типовості явища і запозичається з дійсності.Індивідуальні значення досліджуваної ознаки в окремих одиницях сукупності можуть бути тими чи іншими (наприклад, ціни в окремих продавців). Ці значення неможливо пояснити, не просліджуючи причинно-наслідувальні зв'язки. Тому середня величина індивідуальних значень того самого виду є продукт необхідності. Він є результатом сукупної дії всієї єдиної сукупності, що виявляється в масі повторюваних випадків, опосередковуваних загальними умовами процесу[8].
Розподіл індивідуального значення досліджуваної ознаки породжує випадковість його відхилення від середніх, але не випадкове середнє відхилення, що дорівнює нулю.
Для кращого розуміння і аналізу досліджувальних статистичних даних, їх потрібно систематизувати, побудувавши хронологічні ряди, які називаються рядами динаміки або часовими рядами.
Розподіл індивідуального значення досліджуваної ознаки породжує випадковість його відхилення від середніх, але не випадкове середнє відхилення, що дорівнює нулю.
Середня, розрахована по сукупності в цілому називається загальною середньою, середні, обчислені для кожної групи - груповими середніми. Загальна середня відбиває загальні риси досліджуваного явища, групова середня дає характеристику розміру явища, що складається в конкретних умовах даної групи.
Визначальній функції відповідає рівняння середніх, знаючи визначальну функцію і рівняння середніх
чи (1.1)одержуємо формулу [4]:
(1.2)де Хi- індивідуальне значення ознаки кожної одиниці сукупності;
n - число одиниць сукупності.
Здатність середніх величин зберігати властивості статистичних сукупностей називають визначальною властивістю.
Для кращого розуміння і аналізу досліджувальних статистичних даних, їх потрібно систематизувати, побудувавши хронологічні ряди, які називаються рядами динаміки або часовими рядами.
Кожний ряд динаміки складається з двох елементів:
1) періодів або моментів часу, до яких відносяться рівні ряду(t);
2) статистичних показників, які характеризують інтенсивності рівнів ряду(Y).
а)Характеристики статистичних вибірок
Для вимірювання та оцінки варіації використовують абсолютні та відносні характеристики. До абсолютних відносяться: варіаційний розмах, середнє лінійне та середнє квадратичне відхилення, дисперсія; відносні характеристики представлені низкою коефіцієнтів варіації.
Варіаційний розмах характеризує діапазон варіації, це різниця між максимальним і мінімальним значеннями ознаки:
(1.3)Узагальнюючою мірою варіації є середнє відхилення індивідуальних значень ознаки від центру розподілу.
Медіана вибірки – це значення, яке ділить розмах інтервалу вибірки на дві рівні частини.
Мода вибірки – це значення, яке найчастіше зустрічається в статистичному ряді вибірки.
Середня арифметична величина виборки розраховуэться як:
(1.4)Середнє лінійне відхилення:
(1.5)Середнє квадратичне відхилення:
(1.6)Середній квадрат відхилень – дисперсія:
, (1.7)де
- середнє арифметичне інтервального ряду розподілу, f – частота.Середнє лінійне та середнє квадратичне відхилення – іменовані числа (в одиницях вимірювання ознаки).
Порівнюючи варіації різних ознак або однієї ознаки у різних сукупностях, використовують відносні характеристики варіації. Коефіцієнти варіації розраховуються як відношення абсолютних, іменованих характеристик до центру розподілу і часто виражаються процентами:
Лінійний коефіцієнт варіації:
(1.8)Квадратичний коефіцієнт варіації:
(1.9)б) Динамічні ряди та їх характеристики
Динамічний ряд – це розміщені у хронологічній послідовності значення певного статистичного показника. складовими динамічного ряду є ознака часу (момент або інтервал) та числові значення показника – рівні.
Визначають абсолютні та відносні характеристики динаміки: абсолютний приріст та абсолютне значення 1% приросту; темп зростання та темп приросту. Розрахунок їх грунтується на порівнянні рівнів динамічного ряду. Якщо база порівняння постійна, характеристики динаміки називаються базисними, якщо база порівняння змінна – ланцюговими.
Абсолютний приріст (зменшення) – це різниця рівнів динамічного ряду:
базисні
(1.10) ланцюгові (1.11)Сума ланцюгових абсолютних приростів дорівнює кінцевому базисному приросту
Темп зростання розраховується як відношення рівнів ряду, виражається коефіцієнтом або процентом: