4. Полученная группировка нестандартна, так как отсутствуют 3,4 группы, но тем не менее, основное количество объектов исследования находится в 1-й группе, максимальные общие показатели находятся во 2-й группе, но при этом 5-я группа, несмотря на единственный объект, является лидером по всем показателям.
Задание №3
1. Определим нижнюю и верхнюю интервальные границы для каждой группы и составим рабочую таблицу, куда сведем первичный статистический материал:
Таблица 7. Рабочая таблица
№ группы | Валовой региональный продукт, млн. руб. | Количество регионов, Fj | Середина интервала, млн руб. Xj | Xj * Fj | Накопленная частота f |
1 | 2030,7–72852,4 | 23 | 37441,55 | 61155,65 | 23 |
2 | 72852,4–143674,1 | 6 | 108263,25 | 649579,5 | 29 |
3 | 143674,1–214495,8 | - | 179084,95 | - | 29 |
4 | 214495,8–285317,5 | - | 249906,65 | - | 29 |
5 | 285317,5–356139 | 1 | 320728,25 | 320728,25 | 30 |
Итого | 30 | 1031463,4 |
Средняя арифметическая взвешенная:
Хср = 1031463,4 / 30 = 34382,1
Для определения показателей вариации вариационного ряда составим промежуточную таблицу на основе группировочной таблицы.
Таблица 8. Промежуточная таблица
Середина интервала по группам, млн. руб. Х | Количество регионов, F | (X-Xcр) | │X-Xcр│ F | (X-Xcр)2 F |
37441,55 | 23 | 3059,45 | 70367,35 | 215285388,96 |
108263,25 | 6 | 73881,15 | 443286,9 | 32750545951,9 |
179084,95 | - | 144702,85 | - | - |
249906,65 | - | 215524,55 | - | - |
320728,25 | 1 | 286346,15 | 286346,15 | 81994117619,8 |
Итого | 30 | 800000,4 | 114959948960,66 |
Размах вариации:
R =Xmax – Xmin=356139 – 2030,7 = 354108,3
Среднее линейное отклонение (взвешенное):
L =Σ (Х-Хср) F / n = 800000,4/30 = 266666,8 млн. руб.
Среднее квадратическое отклонение:
δ = √3831998298,68 = 61903,14
Дисперсия:
δ2 = 114959948960,66 / 30 = 3831998298,68
2. При построении гистограммы на оси абсцисс откладываются отрезки, соответствующие величине интервалов ряда. На отрезках строятся прямоугольники, площадь которых пропорциональна частотам интервала.
Вывод. По полученным графикам можно констатировать, что от группы к группе количество обследуемых объектов уменьшалось, при этом произошел разрыв между 2-й и 5-й группами, что подтверждается графиками гистограммы и полигона распределения. График куммуляты показывает, что от группы к группе нарастающим итогом происходило увеличение ВРП.
Средняя величина ВРП равна средней арифметической простой:
Хср = ∑Х / n = 1414644,7 / 30 = 47154,82
Коэффициент вариации V = 61903,14 / 34382,1 = 1,80
Модальным интервалом является интервал с наибольшей частотой. Моду в интервальном ряду находим по формуле
Мо = Хмо + I (Fmo – F-1) / ((Fmo – F-1) + (Fmo – F+1)), где
Хмо – начало модального интервала
Fmo – частота, соответствующая модальному интервалу
F-1 и F+1 – предмодальная и послемодальная частота
Мо = 2030,7 + 70821,7*(23–0) / ((23–0) +(23–6)) = 42753,18
Медианой называется вариант, который находится в середине вариационного ряда. В нашем случае это 15-й регион по порядку возрастания ВРП, т.е.
Ме=15462,2 млн. руб.
Квартили Q – значения признака в ряду распределения, выбранные таким образом, что 25% единиц совокупности будут меньше по величине Q1, 25% единиц будут заключены межу Q1 и Q2, 25% – между Q2 и Q3, и остальные 25% превосходят Q3.
Q1= XQ1 + h ((n+1)/4 – S-1) / fQ1, где
XQ1 – нижняя граница интервала, в которой находится первая квартиль;
S-1 – сумма накопленных частот интервалов, предшествующих интервалу, в котором находится первая квартиль;
fQ1 – частота интервала, в котором находится первая квартиль
Q1 =2030,7+70821,7 * (31/4–0)/ 23 = 25894,5
Q2 = 2030,7+70821,7*(31/2–0)/23 = 49758,4
Q3 = 72852,4+70821,7*(31*0,75–23)/23=144443,9
4. Проверим гипотезу о законе распределения с помощью критерия согласия Пирсона χ2.
Рассчитаем теоретические частоты попадания количества регионов в соответствующие группы. Х1 и Х2 – соответственно нижние и верхние границы интервалов. Т1 и Т2 – нормированные отклонения для нижней и верхней границ интервала. F1 и F2 – значения интегральной функции Лапласа для Т1 и Т2 – определяем по таблицам Лапласа. Оценка попадания случайной величины Р определяется как разница F(T1) – F(T2). Теоретическая частота f' = Р х 30. Составим таблицу 9.
Таблица 9. Расчет теоретических частот
Границы интервала | Фактич. частота f | T1 = (Х1 – Хср) / σ | T2 = (Х2 – Хср) / σ | F(Т1) | F (Т2) | Р | Теоретич. частота f' |
-∞ – 2030,7 | 0 | -∞ | -0,729 | -0,50 | -0,2673 | 0,2327 | 7 |
-2030,7–72852,4 | 23 | -0,729 | 0,415 | -0,2673 | 0,1628 | 0,4301 | 13 |
72852,4–143674,1 | 6 | 0,415 | 1,559 | 0,1628 | 0,4406 | 0,2778 | 8 |
143674,1–214495,8 | 0 | 1,559 | 2,703 | 0,4406 | 0,4965 | 0,0559 | 2 |
214495,8–285317,5 | 0 | 2,703 | 3,847 | 0,4965 | 0,4999 | 0,0034 | 0 |
285317,5–356139 | 1 | 3,847 | 4,991 | 0,4999 | 0,5 | 0,0001 | 0 |
356139 – +∞ | 0 | 4,991 | +∞ | 0,5 | 0,5 | 0 | 0 |
Итого | 30 | 1,00 | 30 |
Проверка показывает, что расчеты сделаны правильно, так как равен итог фактических и теоретических частот.
Рассчитаем значение χ2 = ∑ (f – f')2 / f', произведя расчеты в таблице
Оставляем 2 группы, объединив 1,2 в 1-ю группу, 3–7 во 2-ю группу. Результаты заносим в таблицу 10.
Таблица 10. Расчет фактического значения по критерию Пирсона
Границы интервала | f – f' | (f – f')2 | (f – f')2 / f' |
-∞ -72852,4 | 3 | 9 | 0,45 |
72852,4-+∞ | -3 | 9 | 0,9 |
Итого | 1,35 |
Табличное значение критерия Пирсона при числе степеней свободы 1 и вероятности 0,99 составляет 1,64. Расчетное значение χ2 меньше табличного, поэтому гипотеза о близости эмпирического распределения к нормальному не отвергается.
Задание №4
1. По таблице случайных чисел определим порядковые номера и вид выборки. В выборочную совокупность войдут регионы по двум последним цифрам из 30 первых чисел подряд. Получаем:
12; 20; 22; 20; 24; 12.
Объем выборки – 6 единиц.
Получаем случайную повторную выборку. Величина ВРП:
13043,6; 13043,6; 37501,6; 37501,6; 50914,3; 85889,1.
Составим таблицу 11.
Таблица 11. Выборочная совокупность случайных величин
Объем ВРП | 13043,6 | 37501,6 | 50914,3 | 85889,1 |
Кол-во регионов | 2 | 2 | 1 | 1 |
2. Средняя величина по выборочной совокупности
Хср = (13043,6х2+37501,6х2+50914,3+85889,1) / 6 = 39649,0
S2 =[(13043,6–39649) 2 х2 + (37501,6–39649) 2 х2 + (50914,3–39649)2 +(85889,1–39649)2] / 6 = 614995184
Среднее отклонение от средней в выборке S =√614995184 = ±24799,1
Средняя ошибка выборки σх = ±24799,1 / √6 = ±10126,2
Предельная ошибка выборки (с вероятностью 0,95 по таблице распределения Лапласа) ∆σх = 1,96 х 10126,2 = ±19847,4
Генеральная средняя находится в пределах:
39649–19847,4 = 19801,6
39649+19847,4 = 59496,4
Это соответствует расчетам средней арифметической простой 47154,82 и средней арифметической взвешенной 34382,1.
Задание №5
1. Примем стоимость ОПФ за факторный признак Х, Валовой региональный продукт ВРП за результативный Y.
Построим корреляционную таблицу 12
Таблица 12. Корреляционная таблица расчетов средней стоимости ОПФ и ВРП
№ группы | Количество регионов | Стоимость ОПФ всего | Средняя Стоимость ОПФ | ВРП всего | Средний ВРП |
1 | 23 | 1553901 | 67561 | 380992 | 16565 |
2 | 6 | 904350 | 150725 | 677513,7 | 112919 |
5 | 1 | 641474 | 641474 | 356139 | 356139 |
Итого | 30 | 3099725 | 1414644,7 |
Увеличение средних значений результативного признака с увеличением значений факторного признака свидетельствует о возможном наличии прямой корреляционной связи.
Используя данные индивидуальных значений построим график «поля корреляции».
3. По сгруппированным данным построим уравнение регрессии
На поле корреляции появилась линия, которая по форме ближе всего к прямой. Поэтому предполагаем наличие прямолинейной связи, которая выражается уравнением Yср = а0 + а1 Х., где Х – стоимость ОПФ, Y – валовой региональный продукт. Используя метод наименьших квадратов, определим параметры уравнения, для этого решим систему нормальных уравнений
Рассчитаем значения и данные занесем в таблицу 13.
Таблица 13. Предварительный расчет
№ п/п | Х | Y | Х2 | XY | y2 |
1 | 67561 | 16565 | 4564488721 | 1119147965 | 274399225 |
2 | 150725 | 112919 | 22718025625 | 17019716275 | 12750700561 |
3 | 641474 | 356139 | 411488892676 | 228453908886 | 126834987321 |
Итого | 859760 | 485623 | 438771407022 | 246592773126 | 139860087107 |
n = 3 (количество групп)
Система уравнений примет вид
a0 n + a1 ∑X = ∑Y
a0 ∑X + a1 ∑X2 = ∑XY
или
3a0+ 859760a1 = 485623