Задача №1
Работа двадцати предприятий пищевой промышленности
В отчетном периоде характеризуется следующими данными:
Таблица 1
№ | 1 | 2 |
1 | 10 | 11,8 |
2 | 11 | 12,4 |
3 | 12,6 | 13,8 |
4 | 13 | 15,1 |
5 | 14,2 | 16,4 |
6 | 15 | 17 |
7 | 15,5 | 17,3 |
8 | 16,3 | 18,1 |
9 | 17,7 | 19,6 |
10 | 19,3 | 23,1 |
11 | 10,8 | 12 |
12 | 12,2 | 13 |
13 | 12,8 | 12,9 |
14 | 13,5 | 15,6 |
15 | 14,6 | 16,8 |
16 | 15,3 | 18,2 |
17 | 16 | 17,9 |
18 | 17,1 | 10 |
19 | 18 | 18 |
20 | 20 | 27,2 |
1-Среднегодовая стоимость промышленно-производственных ОФ, млн. руб.
2-Товарная продукция в сопоставимых оптовых ценах предприятия, млн. руб.
1. Проведите ранжирование исходных данных по размеру ОФ и их группировку, образовав 5 групп с равновеликими интервалами. Приведите расчет равновеликого интервала группировки по формуле:
H=Xmax-Xmin/n
2. Определите по каждой группе:
– число заводов;
– стоимость ОПФ-всего и в среднем на один завод:
– стоимость ТП-всего и в среднем на один завод.
Результаты представьте в табличном виде, проанализирйте их и сделайте выводы
H=20–10/5=2
где xmax, xmin – максимальное и минимальное значения кредитных вложений
Определим теперь интервалы групп (xi, xi+1):
1 группа: 10–12 млн. руб.
2 группа: 12–14 млн. руб.
3 группа: 14–16 млн. руб.
4 группа: 16–18 млн. руб.
5 группа: 18–20 млн. руб.
Далее упорядочим исходную таблицу по возрастанию ОФ
№ | Группа | Среднегодовая стоимость промышленно – производственных ОФ в группе, млн. руб. | Товарная продукция в сопоставимых оптовых ценах предприятия, млн. руб. |
1 | 10,1–12 | 10 | 11,8 |
11 | 12,4 | ||
10,8 | 12 | ||
2 | 12,1–14 | 12,6 | 13,8 |
13 | 15,1 | ||
12,2 | 13 | ||
12,8 | 12,9 | ||
13,5 | 15,6 | ||
3 | 14,1–16 | 14,2 | 16,4 |
15 | 17 | ||
15,5 | 17,3 | ||
14,6 | 16,8 | ||
15,3 | 18,2 | ||
16 | 17,9 | ||
4 | 16,1–18 | 16,3 | 18,1 |
17,7 | 19,6 | ||
17,1 | 10 | ||
18 | 18 | ||
5 | 18,1–20 | 19,3 | 23,1 |
20 | 27,2 |
На основе полученной таблицы определим требуемые показатели. Результаты представим в виде групповой таблицы:
Таблица 1.2
Группа | Количество заводов в группе, шт. | Среднегодовая стоимость промышленно – производственных ОПФ, млн. руб. | Стоимость промышленно – производственных ОПФ, млн. руб. | Товарная продукция в сопоставимых оптовых ценах предприятия, млн. руб. | ||
1 | 3 | 10–12 | Всего | 31,8 | Всего | 36,2 |
В среднем на один завод | 10,6 | В среднем на один завод | 12,067 | |||
2 | 5 | 12,1–14 | Всего | 64,1 | Всего | 70,4 |
В среднем на один завод | 12,82 | В среднем на один завод | 14,08 | |||
3 | 6 | 14,1–16 | Всего | 90,6 | Всего | 103,6 |
В среднем на один завод | 15,1 | В среднем на один завод | 17,27 | |||
4 | 4 | 16,1–18 | Всего | 69,1 | Всего | 65,7 |
В среднем на один завод | 17,275 | В среднем на один завод | 17,275 | |||
5 | 2 | 18,1–20 | Всего | 39,3 | Всего | 50,3 |
В среднем на один завод | 19,65 | В среднем на один завод | 25,15 |
Задача №4
Имеются данные по трем предприятиям, вырабатывающие однородную продукцию:
№ | Базисный год | Отчетный год | ||
Затрата времени на ед. продукции, час | Выпущено продукции, тыс. ед. | Затраты времени на ед. продукции, тыс. ед. | Затраты времени на всю продукцию, ч | |
1 | 0,34 | 52,1 | 0,34 | 19975 |
2 | 0,48 | 45,7 | 0,48 | 22248 |
3 | 0,53 | 23,8 | 0,53 | 13462 |
Обоснуйте выбор формул средней и по этим формулам определите средние затраты времени на продукцию по трем предприятиям в базисном и отчетном годах, сравните полученные результаты и сделайте выводы.
Решение
Средние затраты времени определяются по формуле:
,где V – затраты времени на единицу продукции; S – затраты времени на всю продукцию. Определим средние затраты времени на 3 предприятиях. Т.к. заданы затраты времени на единицу продукции и затраты времени на всю продукцию то:
Данная формула называется средней гармонической взвешенной.
Подставив в последнюю формулу известные значения, получим средние затраты времени на производство на предприятиях в отчетном году:
P=19975+22248+13462/(19972/0,34+22248/0,48+13462/0,53)= 0,427 ч
Определим средние затраты времени на производства продукции в базисном году:
Данная формула называется средней арифметической взвешенной.
Подставив в последнюю формулу известные значения, получим затраты времени на производство продукции в базисном году:
P=(0,34*52,1+0,48*45,7+0,53*23,8)/(52,1+45,7+23,8)= 0,4298=0,43 ч
Вывод: средние затраты времени на производство продукции в базисном и отчетном году отличаются на (0,43–0,427)*100%= 0,003*100%=0,3%
Задача №9
В результате контрольной выборочной проверки расфасовки чая осуществлена 25% механическая выборка по способу бесповторного отбора, в результате которой получено следующее распределение пачек чая по массе:
Масса пачки чая, г | Число пачек чая, шт. |
До 49 | 17 |
49–50 | 52 |
50–51 | 21 |
51–52 | 7 |
52 и выше | 3 |
ИТОГО | 100 |
По результатам выборочного обследования определите:
1. Среднюю массу пачки чая;
2. Дисперсию и среднее квадратичное отклонение;
3. Коэффициент вариации;
4. С вероятностью 0,997 возможные пределы средней массы пачки чая во всей партии продукции;
5. С вероятностью 0,954 возможные пределы удельного веса пачек чая с массой до 49 г. и свыше 52 г. во всей продукции.
Решение
Приведем группировку к стандартному виду с равными интервалами и найдем середины интервалов для каждой группы. Результаты представлены в таблице:
Масса пачки чая, г | Масса пачки чая, г | Средняя масса пачки чая, г | Число пачек чая, шт |
До 49 | 48–49 | 48,5 | 17 |
От 49 до 50 | 49–50 | 49,5 | 52 |
От 50 до 51 | 50–51 | 50,5 | 21 |
От 51 до 52 | 51–52 | 51,5 | 7 |
Свыше 52 | 52–53 | 52,5 | 3 |
Итого | 100 |
Среднюю массу пачки чая находим по формуле средней арифметической взвешенной:
Подставив в последнюю формулу известные значения, получим среднюю массу пачки чая:
Y=(48.5*17+49.5*52+50.5*21+51.5*7+52.5*3)/100=49.77 г.
Дисперсия определяется по формуле:
.Подставив в последнюю формулу известные значения, получим дисперсию:
s²=((48,5–49,77)²*17+(49,5–49,77)²*52+(50,5–49,77)²*21+(51,5–49,77)²*7+(52,5–49,77)²)/100=85,71/100=0,8571 г.²
Среднее квадратическое отклонение равно:
S=√s²=√0,8571=0,93 г.
Коэффициент вариации определяется по формуле:
V=s/y=0,93/49,77= 0,019*100%=1,9%
Рассчитаем сначала предельную ошибку выборки. Так при вероятности p = 0,997 коэффициент доверия t = 3. Поскольку дана 25%-ная случайная бесповторная выборка, то
n/N=0,25
где n – объем выборочной совокупности, N – объем генеральной совокупности.
Считаем также, что дисперсия s²=0,8571. Тогда предельная ошибка выборочной средней равна:
Δy=t*√σ²/n*(1-n/N)=3*√0,8571/100*(1–0,25)=0,24 г.
Определим теперь возможные границы, в которых ожидается средняя масса чая на 1 пакетик чая
y – Δy≤my≤y+ Δy
49,77–0,8571≤my≤49,77+0,8571
48,9129≤my≤50,6271
Т.е., с вероятностью 0,997 можно утверждать, что масса чая на 1 пакетик находится в пределах 48,9129 до 50,6271
Выборочная доля w удельного веса пачек чая с массой до 49 г. и свыше 52 г. во всей продукции с вероятностью 0,954 равна.
W=(48+3)/100=0,51=51 г.
Учитывая, что при вероятности p = 0,954 коэффициент доверия t = 2, вычислим предельную ошибку выборочной доли:
Δw= t*√(w*(1-w)/n) *(1-n/N)=2*√(0,51*(1–0,51)/100)*(1–0,25)=0,086г
или
Пределы доли признака во всей совокупности:
51–8,6≤d≤51+8,6
42,4≤d≤59,6
Таким образом, с вероятностью 0,954 можно утверждать, что границы удельного веса пачек чая находятся в пределах42,4г до 59,6г во всей продукции.