Смекни!
smekni.com

Планирование эксперимента (стр. 2 из 4)

Необходимо также обосновать набор средств измерений (приборов) другого оборудования, машин и аппаратов. В связи с этим экспериментатор должен быть хорошо знаком с выпускаемой в стране измерительной аппаратурой (при помощи ежегодно издающихся каталогов, по которым можно заказать выпускаемые отечественным приборостроением те или иные средства измерений). Естественно, что в первую очередь следует использовать стандартные, серийно выпускаемые машины и приборы, работа на которых регламентируется инструкциями, ГОСТами и другими официальными документами.

В отдельных случаях возникает потребность в создании уникальных приборов, установок, стендов, машин для разработки темы. При этом разработка и конструирование приборов и других средств должны быть тщательно обоснованы теоретическими расчетами и практическими соображениями о возможности изготовления оборудования. При создании новых приборов желательно использовать готовые узлы выпускаемых приборов или реконструировать существующие приборы. Ответственный момент – установление точности измерений и погрешностей.

В методике подробно разрабатывается процесс проведения эксперимента, составляется последовательность (очередность) проведения операций измерений и наблюдений, детально описывается каждая операция в отдельности с учетом выбранных средств для проведения эксперимента, обосновываются методы контроля качества операций, обеспечивающие при минимальном (ранее установленном) количестве измерений высокую надежность и заданную точность. Разрабатываются формы журналов для записи результатов наблюдений и измерений[4, с. 256].

Важным разделом методики является выбор методов обработки и анализа экспериментальных данных. Обработка данных сводится к систематизации всех цифр, классификации, анализу. Результаты экспериментов должны быть сведены в удобочитаемые формы записи – таблицы, графики, формулы, номограммы, позволяющие быстро и доброкачественно сопоставлять полученное и проанализировать результаты. Все переменные должны быть оценены в единой системе единиц физических величин.

Результаты экспериментов должны отвечать трем статистическим требованиям:

1) требование эффективности оценок, т.е. минимальность дисперсии отклонения относительно неизвестного параметра;

2) требование состоятельности оценок, т.е. при увеличении числа наблюдений оценка параметра должна стремиться к его истинному значению;

3) требование несмещенности оценок – отсутствие систематических ошибок в процессе вычисления параметров.

Важнейшей проблемой при проведении и обработке эксперимента является совместимость этих трех требований.

При разработке плана-программы эксперимента всегда необходимо стремиться к его упрощению, наглядности без потери точности и достоверности. Это достигается предварительным анализом и сопоставлением результатов измерений одного и того же параметра различными техническими средствами, а также методов обработки полученных результатов. В условиях интенсификации проведения научных исследований важнейшее место в процессе подготовки эксперимента должно отводиться его автоматизации (АСНИ) с вводом экспериментальных данных непосредственно с ЭВМ, с расчетом результирующих показателей, с автоматическим управлением хода эксперимента (последовательности и повторимости замеров, определение средних значений, построение и т.д.)[4, с. 257].

3. ОСНОВЫ ПЛАНИРОВАНИЯ ЭКСПЕРИМЕНТОВ, ВЫБОР ФАКТОРОВ

Для подробного изучения объекта исследования необходима его подробная модель. Подходящей моделью является «черный ящик», введенный в кибернетике с целью изучения сложности. Его построение основано на принципе: оптимальное управление возможно при неполной информации. Ясная формулировка этого факта является важнейшим достижением кибернетики.



Рисунок 1. – Схема черного ящика: x1, x2 …, xn - входы; y1,y2 …,ym – выходы.

Схема черного ящика приведена на рис. 1. Объекту исследования соответствует прямоугольник. Выходы, обозначаемые стрелками, выходящими из объекта, соответствуют параметрам оптимизации. Стрелки, входящие в объект, - входы – соответствуют возможным способам воздействия на объект. В терминологии планирования эксперимента входы называются факторами[1, с. 29].

Фактором называется измеримая переменная величина, принимающая в некоторый момент некоторое определенное значение и соответствующая одному из возможных способов воздействия на объект исследования.

Число возможных воздействий на объект принципиально неограниченно. Чтобы облегчить выбор, удобно разбить их на две группы. К первой группе относятся воздействия (факторы), определяющие сам объект, а ко второй – факторы, определяющие его состояние.

Каждый фактор имеет область определения. В планировании эксперимента рассматриваются только дискретные области определения факторов. Кроме того, эти области всегда ограничены. Ограничения могут быть принципиальными и техническими. Примером принципиального ограничения может служить абсолютный нуль температуры в обычных термодинамических системах. Если в ходе оптимизации фактор получил значение, близкое к принципиальному ограничению, то возможности объекта исчерпаны. Примером технического ограничения может служить температура плавления материала аппарата. При нагревании до этой температуры аппарат просто расплавится. Если в ходе оптимизации значение фактора приблизилось к технической границе, а желаемое значение параметра оптимизации еще не достигнуто, то может быть поставлена новая задача: создать, например, более тугоплавкий материал для аппарата. Решение этой новой задачи позволит продолжить оптимизацию.

Следует указать на два требования, предъявляемые к совокупности факторов. Это – требования отсутствия корреляции между любыми двумя факторами и совместимости факторов. Отсутствие коррелированности факторов означает возможность установления какого-либо фактора на любой уровень, вне зависимости от уровней других факторов. Если эти условия не выполняются, то нельзя планировать эксперимент. Кроме того, нет никакой необходимости включать в эксперимент коррелированные факторы, так как один из них не содержит никакой информации. Требование некоррелированности не означает, что между факторами нет никакой связи. Достаточно, чтобы эта связь не была линейной. Это требование может налагать ограничения на области определения факторов.

Другие ограничения на область налагаются требованием совместимости факторов. Несовместимость факторов возникает в том случае, если некоторые комбинации их значений, каждое из которых лежит внутри области определения, не могут быть осуществлены. Если в эти комбинации входят значения факторов, близкие к границам областей их определения, то устранение несовместимости производится просто сокращением областей. Сложнее обстоит дело тогда, когда запрещенные значения лежат внутри областей. Тогда области оказываются многосвязными. Это вызывает трудности, преодоление которых в некоторых случаях приводит к расчленению задачи на части[1, с. 35].

Все факторы можно разделить на качественные и количественные. Часто в виде качественного фактора используют различные взаимоисключающие реагенты. Следует иметь в виду, что при наличии качественного фактора возможна следующая альтернатива: либо в одном эксперименте варьировать этот фактор на всех интересных уровнях, либо ставить независимые эксперименты (с числом факторов на единицу меньше) для каждого уровня этого фактора и затем сравнивать полученные оптимумы. Этот выбор неоднозначен. Желательно ставить одно исследование, но это может в данном случае привести к большим трудностям. В каждом конкретном случае решением такого вопроса должен заниматься специалист по планированию.

Отбор факторов начинают после того, как в распоряжении экспериментатора окажется их полный список. При составлении такого списка следует перечислить все возможные факторы (удовлетворяющие общим требованиям), как бы велико ни было их число. К сожалению, слишком часто экспериментаторы боятся увеличивать список факторов, чтобы не усложнять задачу. Это приводит к малоэффективным или даже бессмысленным исследованиям и является просто следствием незнания методов отбора факторов.

Таким образом, главной заботой при составлении списка факторов должна быть его полнота. Лучше включить несколько десятков несущественных переменных, чем пропустить одно существенное.

Отбор факторов можно осуществлять экспериментально. Но так как даже небольшое сокращение числа факторов приводит к значительной экономии опытов, возникает вопрос об использовании априорной информации для их предварительного отсеивания[1, с. 37].

4. МЕТОДЫ И СПОСОБЫ ИЗМЕРЕНИЙ, ПОГРЕШНОСТИ ИЗМЕРЕНИЙ

Важное место в экспериментальных исследованиях занимают измерения. Измерение – это нахождение физической величины опытным путем с помощью специальных технических средств. Суть измерения составляет сравнение измеряемой величины с известной величиной, принятой за единицу (эталон).

Теорией и практикой измерения занимается метрология – наука об измерениях, методах и средствах обеспечения их единства и способах достижения требуемой точности.