МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ УКРАИНЫ
Контрольная работа по курсу
"Статистика"
Определим величину интервала
I= (8,1-0,5): 4=7,6: 4=1,9
Количество заводов по группам.
№ группы | Группировка заводов | Среднегодовая стоимость | Валовая продукция в сопоставимых ценах, грн. | Уровень фондоотдачи (%) | |||
к-во шт. | № № | всего | на завод | всего | на завод | ||
1 | 5 | 1,8,12,13, 20 | 5,0 | 1,0 | 4,5 | 0,9 | 90 |
2 | 8 | 2,3,5,7,9,11,22,23, | 26,9 | 3,3625 | 26,8 | 3,35 | 99,6 |
3 | 6 | 4,6,10,15,18,21 | 30,3 | 13,3 | 35 | 5,833 | 115,5 |
4 | 5 | 14,16,17, 19,24 | 34,8 | 6,96 | 34,5 | 6,9 | 99 |
Интервал для групп заводов:
1-я: 0,5…2,4
2-я: 2,4…4,3
3-я: 4,3…6,2
4-я: 6,2…8,1
Уровень фондоотдачи = (Валовая продукция / стоимость ОФ) * 100%
Выводы: с ростом стоимости основных фондов (ОФ) растет стоимость валовой продукции следовательно между этими показателями существует прямая зависимость. Уровень фондоотдачи не зависит от изменения стоимости ОФ и стоимости валовой продукции.
Имеются данные по двум заводам, вырабатывающим однородную продукцию (табл.31).
Таблица 31
Номер завода | 1998 год | 1999 год | ||
Затраты времени на единицу продукции, ч | Изготовление продукции, шт. | Затраты времени на единицу продукции, ч | Затраты времени на всю продукцию, ч | |
1 | 2,0 | 150 | 1,9 | 380 |
2 | 3,0 | 250 | 3,0 | 840 |
Вычислите средние затраты времени на изготовление единицы продукции по двум заводам с 1998 по 1999 г.
Укажите, какой вид средней необходимо применять при вычислении этих показателей.
Решение.
Если в статистической совокупности дан признак Xi и его частота fi, то расчет ведется по формуле средней арифметической взвешенной:
(ч)Если дан признак xi, нет его частоты fi, а дан объем M = xifiраспространения явления, тогда расчет ведем по формуле средней гармонической взвешенной:
(ч)Вывод:
В среднем затраты времени на изготовление единицы продукции в 1998г. выше, чем в 1999г.
Для определения средней суммы вклада в сберегательных кассах района, имеющего 9000 вкладчиков, проведена 10% -я механическая выборка, результаты которой представлены в таблице.
Группы вкладов по размеру, грн. - xi | До 200 | 200-400 | 400-600 | 600-800 | Св.800 | Σ |
Число вкладчиков - fi | 80 | 100 | 200 | 370 | 150 | 900 |
Середина интервала | 100 | 300 | 500 | 700 | 700 | |
x - A=x' - 700 | -600 | -400 | -200 | 0 | +200 | |
(X - A) / i | -3 | -2 | -1 | 0 | 1 | |
( (X - A) / I) *f | -240 | -200 | -200 | 0 | 150 | -490 |
( (X - A) / I) 2 *f | 720 | 400 | 200 | 0 | 150 | 1470 |
Решение: для определения средней суммы вкладов способов моментов воспользуемся формулой:
= m1Δ*I+Aiгде: m1 - момент первого порядка, x – варианта, i - величина интервала, f – частота, Δ - постоянная величина, на которую уменьшаются все значения признака.
m1 = (Σ ( (X-A) / i)) *f) / Σf
= ( (Σ ( (X-A) / i*f) / Σf) *i+AНаходим середины интервалов
(200 + 400) / 2 = 300 - для закрытых интервалов;
Для открытых интервалов вторая граница достраивается:
(0 + 200) / 2 = 100
Величина интервала i = 200.
Наибольшая частота равна 370, следовательно А = 700.
В вариационных рядах с равными интервалами в качестве А принимается вариант с наибольшей частотой.
Число вкладчиков
f=900m1= (-240-200-200+150) / 900=-0,544
=-0,544*200+700=591,2 грн.Вывод: в среднем сумма вкладов составляет 591,2 грн.
Определим дисперсию способом моментов:
σ22=i2 * (m2 -
)m1=-0.544; m2 = (Σ ( (X-A) / i) 2 *f) / Σf
m2=1470/900=1,63
σ2=2002* (1,63- (-0,544) 2) =53362,56 среднеквадратичное отклонение:
=231 грн.Соотношение среднеквадратичного отклонения к средней называют квадратичным коэффициентом вариации:
V= (σ/
) *100%= (231/591,2) *100=39,07%Предельная ошибка выборки средней вычисляется по формуле:
Δx=t*
2/n, Δx=2* (грн)где: n - выбранной совокупности, n=900, σ2 – дисперсия, t - коэффициент доверия (табличное значение для вероятности 0,954 соответствует t=2).
Δx=2*
15,4 (грн)Т.о. с вероятностью 0,954 можно сказать, что средняя сумма вкладов в сберкассах района находится в пределах
591,2-15,4 ≤ x ≤ 591,2+15,4
575,8 ≤ x ≤ 606,4
Средняя ошибка доли признака. Доля признака в выборочной совокупности:
Р=
=20%, μ=Nт=9000 интегральная совокупность, n=900 - выборочная совокупность
μ =
=0,01265=1,3%Δ=t*M=2*1,3=2,6%
20-6 ≤
≤ 20+2,6 => 17,4 ≤ ≤ 22,6Имеются данные о младенческой смертности на Украине
Год | 1990 | 1995 | 1996 | 1997 | 1998 | 1999 |
Умерло детей в возрасте до 1 года (всего), тыс. чел. | 12,3 | 11,6 | 11,1 | 10,6 | 9,0 | 9,3 |
Для анализа ряда динамики исчислите:
1) абсолютный прирост, темпы роста и прироста (по годам и к базисному 1995 г), абсолютное содержание 1% прироста (полученные показатели представьте в виде таблицы);
2) среднегодовой темп роста и прироста младенческой смертности: а) с 1990 по 1996 годы; б) с 1995 по 1999 годы; в) с 1990 по 1999 годы. Изобразите исходные данные графически. Сделайте выводы.
Решение:
1. Абсолютный прирост (Δi) определяется как разность между двумя уровнями динамического ряда и показывает, на сколько данный уровень ряда превышает уровень, принятый за базу сравнения Δi=yi-yбаз, где yi - уровень сравниваемого периода; yбаз - базисный уровень. При сравнении с переменной базой абсолютный прирост будет равен Δi=yi-yi-1, где yi - уровень сравниваемого периода; yi-1 - предыдущий уровень. Темпы роста определяются как процентное отношение двух сравниваемых уровней:
При сравнении с базисом:
.По годам:
.Темп прироста показывает, на сколько процентов уровень данного периода больше (или меньше) базисного уровня.
По отношению к базисному:
;по годам:
или можно вычислять так:
Тп=Тр-100%.
Абсолютное содержание 1% прироста - сравнение темпа прироста с показателем абсолютного роста:
.2. Среднегодовая младенческая смертность вычисляется по формуле:
.3. Среднегодовой абсолютный прирост вычисляется по формуле:
.4. Базисный темп роста с помощью взаимосвязи цепных темпов роста вычисляется по формуле:
.5. Среднегодовой темп роста вычисляется по формуле:
.Среднегодовой темп прироста вычисляется по формуле:
.Рассчитанные данные представим в таблице
Год | Умерло, тыс. чел. | Абсол. прирост | Ср. год. темп роста | Ср. год. темп прироста | Аі | |||
цепн. | базисн. | цепн. | базисн. | цепн. | базисн. | |||
1990 | 12,3 | - | 0,7 | - | 106,8 | - | 6,8 | - |
1995 | 11,6 | 0,7 | 0 | 94 | 100 | -6 | - | 0,125 |
1996 | 11,1 | 0,5 | 0,5 | 102 | 102 | 2 | 2 | 0,12 |
1997 | 10,6 | 0,5 | 0,8 | 89 | 90,6 | -11 | -0,4 | 0,12 |
1998 | 9.0 | 1,6 | 0,8 | 89 | 80,3 | -11 | -19,7 | 0,11 |
1999 | 9,3 | -0,3 | -1,1 | 99 | 78,6 | -1 | -21,4 | 0,09 |
В качестве базисного берем 1995 г.