Смекни!
smekni.com

Модель Стоуна (стр. 1 из 2)

Модель Стоуна

Москва

2007


Содержание

Введение. 3

Решение задачи Стоуна для случая двух товаров. 4

Минимизация расходов потребителя: обратная задача. 7

Решение задачи Стоуна для случая трех товаров. 9

Пример 1. 9

Пример 2. 10

Пример 3. 11

Пример 4. 12

Пример 5. 14

Литература. 15


Введение

Пусть U – функция полезности потребителя. Задачу потребительского выбора можно записать в виде

(*)

,

(Доход мы нормировали на единицу, не теряя общности). Набор товаров

можно рассматривать в качестве минимальной корзины потребления. Для приобретения минимального набора
необходимо, чтобы доход был больше стоимости этого набора, т.е.

(**)

Показатели степеней ai > 0 характеризуют относительную "ценность" соответствующих товаров для потребителя. Добавив к функции (*) бюджетные ограничения (**), получим задачу потребительского выбора, которую называют моделью Р. Стоуна.


Решение задачи Стоуна для случая двух товаров

Выведем оптимум потребителя при покупке им двух благ X и Y (при необходимости число благ можно расширить до сколь угодно большого количества). Тогда наша задача состоит в том, чтобы максимизировать функцию полезности потребителя от этих двух благ – U (X, Y). Однако наш потребитель ограничен своим доходом (бюджетом), который он тратит без остатка на приобретение этих благ. В результате бюджет потребителя можно представить как I = PXX + PYY.

Затем мы решаем задачу на условный локальный максимум (максимум с ограничением) методом множителей Лагранжа. Составляем следующее уравнение

L = U (X, Y) + l(I - PXX - PYY), (1)

где l - так называемый «множитель Лагранжа». Его экономический смысл станет нам ясен несколько позже. Первое условие максимума с ограничениями получается в результате нахождения частных производных первого порядка по X, Y и l из уравнения (1) и приравнивания их к нулю.[1] Получаем систему уравнений (2)

(2)

Последнее уравнение из (2) говорит нам о том, что доход (бюджет) потребителя расходуется на блага X и Y без остатка. Однако нас больше интересуют первые два уравнения из (3.А.2). Из них следует, что

(3)

Правые части в (3) есть ни что иное, как MUX и MUY, то есть предельные полезности благ X и Y . Отсюда получаем сформулированное в основном тексте главы 2 условие оптимума потребителя.

, (4)

где l может быть интерпретирована как предельная полезность денежной единицы. Ведь для любого блага n MUn/Pn может трактоваться как темп возрастания полезности по мере увеличения затрат денег на покупку этого блага.

Для того, чтобы найти точки оптимума (или, что тоже самое, спрос на блага X и Y), надо знать функцию полезности. Допустим, U = XY. Тогда по методу Лагранжа получаем

(5)

Решая систему уравнений (5) относительно X и Y получаем

,

Пусть, например, доход потребителя равен 100 д.е, PX = 2 д.е, PY = 5 д.е. Тогда X* = 25, Y* = 10. Если предположить, что PX стало равно 5 д.е., а PY снизилось до 4 д.е., то новые значения спроса на эти блага X* = 10, а Y* = 12,5.

Заметим, что в нашем случае функции спроса достаточно простые. Спрос зависят только от цены благ и дохода потребителя. В то же время они позволяют заметить, что

а) каждому значению цены блага и дохода отвечает одно значение спроса;

б) если все цены и доходы меняются в одной и той же пропорции, то спрос на блага не меняется.

Минимизация расходов потребителя: обратная задача

В предыдущем разделе математического приложения ставилась задача максимизировать полезность потребителя при ограниченном доходе. Теперь ставится обратная задача: как минимизировать расходы потребителя при постоянном значении функции полезности.

Эта проблема не является какой-то искусственно созданной математической задачей. Ей можно дать экономическое толкование. Представим данную кривую безразличия и соответствующее ей значение функции полезности как задающие определенный уровень жизни или уровень реального дохода потребителя. Тогда есть смысл спросить: каковы минимальные расходы, позволяющие достичь данный уровня жизни при некоторых фиксированных ценах? Такой подход также позволяет анализировать эффект ценовых изменений на эти расходы.

Теперь мы минимизируем I = PXX + PYY при ограничении U (X, Y) =

, где
- определенный фиксированный уровень полезности. Составляем уравнение Лагранжа для этого случая

L = ( PXX + PYY) - m [U (X, Y) -

]

Тогда имеем

(1)

Возьмем первые два уравнения из (1). Из них получаем

, (2)

где m - величина обратная предельной полезности денежной единицы, то есть равна 1/l. Если заменить в (2) m на 1/l и возвести уравнение в степень - 1, то получим знакомое нам условие оптимума потребителя, совпадающее с (4).


Решение задачи Стоуна для случая трех товаров

Пример 1

Пусть функция полезности имеет вид

Бюджетное ограничение

составим фунцию Лагранжа

Найдем частные производные

решение системы

Пример 2

Пусть функция полезности имеет вид

Бюджетное ограничение

составим функцию Лагранжа

Найдем частные производные

решение системы

Пример 3

Пусть функция полезности имеет вид

Бюджетное ограничение

составим функцию Лагранжа

Найдем частные производные