Средняя величина из отклонений размера прибыли от их средней составляет -0,03 млн. руб.
Дисперсия – средний квадрат отклонений индивидуальных значений признака от их средней величины. Находится по формуле:
s 2 = S (Xi – X)2 *fi / S fi
Таблица 8 – Расчет дисперсии по чистым активам
Группы банков по чистым активам | Число банков, f | Середина интервала, X i | X i – Х | (X i – Х)2 | (X i – Х) 2 *f |
425–4568,5 | 20 | 2496,75 | -3038,55 | 9232786,1 | 184655722 |
4568,5–8712 | 5 | 6640,25 | 1104,95 | 1220914,5 | 6104572,5 |
8712–12855,5 | 2 | 10783,75 | 5248,45 | 27546227,4 | 55092454,8 |
12855,5–16999 | 0 | 14927,25 | 9391,95 | 88208724,8 | 0 |
16999–21142,5 | 2 | 19070,75 | 13535,45 | 183208406,7 | 366416813,4 |
21142,5–25286 | 1 | 23214,25 | 17678,95 | 312545273,1 | 312545273,1 |
Итого | 30 | 924814835,8 |
s 2 =924814835,8/30=30827161,2 млн. руб.
Таблица 9 – Расчет дисперсии по прибыли
Группы банков по прибыли | Число банков, f | Середина интервала, X i | X i – Х | (X i – Х)2 | (X i – Х) 2 *f |
5–331,16 | 24 | 168,08 | -119,62 | 14308,9 | 343414,7 |
331,16–657,32 | 4 | 494,24 | 206,54 | 42658,8 | 170635,1 |
657,32–983,48 | 1 | 820,4 | 532,7 | 283769,3 | 283769,3 |
983,48–1309,64 | 0 | 1146,56 | 858,86 | 737640,5 | 0 |
1309,64–1635,8 | 0 | 1472,72 | 1185,02 | 1404272,4 | 0 |
1635,8–1962 | 1 | 1798,9 | 1511,2 | 2283725,4 | 2283725,4 |
Итого | 30 | 3081544,5 |
s 2 = 3081544,5 /30 =102718,1 млн. руб.
Среднее квадратическое отклонение – это корень квадратный из дисперсии. Находится по формуле:
σ= Ö (S (Xi – X)2*fi /S fi)
σ= Ö 30827161,2 =5552,2 млн. руб.
σ= Ö 102718,1 = 320,5 млн. руб.
Относительные показатели вариации
В общем виде они показывают отношение абсолютных показателей вариации к средней величине. К ним относятся:
Коэффициент осцилляции. Находится по формуле:
VR = R / x * 100%
VR1 = 24861 / 5535,3 * 100% = 449,1%
VR2 =1957 / 287,7 *100% = 680,2%
Относительное линейное отклонение. Находится по формуле:
Vd = d / x * 100%
Vd1 = 0,02 / 5535,3 * 100% = 0,0004%
Vd1 = -0,03 / 287,7* 100% =-0,01%
Коэффициент вариации (характеризует однородность совокупности). Находится по формуле:
Vσ = σ / x * 100%
Vσ1= 5552,2 / 5535,3 * 100% = 100% > 33% (совокупность неоднородная)
V σ1= 320,5/ 287,7* 100% = 111%> 33% (совокупность неоднородная)
г) Определение количественных характеристик распределения. К ним относятся:
– Показатель асимметрии. Находится по формуле:
As = m3 / s 3
m3 = S (Xi – X)3 * fi / S fi
где: m3 – центральный момент 3 – го порядка;
s 3 - среднее квадратичное отклонение в кубе.
Таблица 10 – Расчет асимметрии по чистым активам, млн. руб.
Группы банков по чистым активам | Число банков, f | Середина интервала, X i | X i – Х | (X i – Х)3 | (X i – Х) 3 *f |
425–4568,5 | 20 | 2496,75 | -3038,55 | -28054282211,7 | -561085644234 |
4568,5–8712 | 5 | 6640,25 | 1104,95 | 134909479,5 | 674547397,5 |
8712–12855,5 | 2 | 10783,75 | 5248,45 | 144574997210,6 | 289149994421,2 |
12855,5–16999 | 0 | 14927,25 | 9391,95 | 828451932908,8 | 0 |
16999–21142,5 | 2 | 19070,75 | 13535,45 | 2479808228501,3 | 4959616457002,6 |
21142,5–25286 | 1 | 23214,25 | 17678,95 | 5525472255915,4 | 5525472255915,4 |
Итого | 30 | 10213827610502,7 |
m3 =10213827610502,7 / 30 = 340460920350,1
As = 340460920350,1/171157252096,6 = 1,9 > 0, асимметрия правосторонняя
Таблица 11 – Расчет асимметрии по прибыли, млн. руб.
Группы банков по прибыли | Число банков, f | Середина интервала, X i | X i – Х | (X i – Х)3 | (X i – Х) 3 *f |
5–331,16 | 24 | 168,08 | -119,62 | -1711635,9 | -41079261,6 |
331,16–657,32 | 4 | 494,24 | 206,54 | 8810742,7 | 35242970,8 |
657,32–983,48 | 1 | 820,4 | 532,7 | 151163900,8 | 151163900,8 |
983,48–1309,64 | 0 | 1146,56 | 858,86 | 633529919,5 | 0 |
1309,64–1635,8 | 0 | 1472,72 | 1185,02 | 1664090879,9 | 0 |
1635,8–1962 | 1 | 1798,9 | 1511,2 | 3451165884,9 | 3451165884,9 |
Итого | 30 | 3596493494,9 |
m3 = 3596493494,9 / 30 = 119883116,5
As = 119883116,5/32921840,1= 3,6>0, асимметрия является правосторонней.
Чтобы определить является ли асимметрия существенной или несущественной рассчитывают отношение показателя асимметрии к среднеквадратическому отклонению:
As / sAs
где: sAs - среднеквадратическая ошибка асимметрии.
Она зависит от объема совокупности и рассчитывается по формуле:
sAs = Ö 6*(n – 1)/(n+1)*(n+3)
sAs = Ö 6 * (30 – 1)/(30+1)*(30+3) = 0,4
As / sAs (по чистым активам) = 1,9 / 0,4 = 4,75>3
As / sAs (по прибыли) = 3,6/ 0,4 = 9>3
Таким образом, As / sAs во всех случаях > 3 Þ асимметрия существенна. Так как асимметрия существенна, эксцесс не рассчитывается.
д) Нахождение эмпирической функции и построение ее графика.
Для удобства вычислений вероятностей случайные величины нормируются, а затем по специальным таблицам находим плотность распределения нормированной случайной величины:
t = (xi – x) / s
f | = (S f * k / s)* j (t)
Таблица 14 – Расчет теоретических частот по чистым активам
Середина интервала, X i | Число банков, f | X i – Х | t | j (t) | f | |
2496,75 | 20 | -3038,55 | -0,54 | 0,3448 | 8,0 |
6640,25 | 5 | 1104,95 | 0,19 | 0,3918 | 9,0 |
10783,75 | 2 | 5248,45 | 0,94 | 0,2565 | 6,0 |
14927,25 | 0 | 9391,95 | 1,69 | 0,0957 | 2,0 |
19070,75 | 2 | 13535,45 | 2,44 | 0,0203 | 0 |
23214,25 | 1 | 17678,95 | 3,18 | 0,0025 | 0 |
Итого | 30 | 25 |
Таблица 15 – Расчет теоретических частот по прибыли
Середина интервала, X i | Число банков, f | X i – Х | t | j (t) | f | |
168,08 | 24 | -119,62 | -0,37 | 0,3726 | 11,0 |
494,24 | 4 | 206,54 | 0,64 | 0,3251 | 10,0 |
820,4 | 1 | 532,7 | 1,66 | 0,1006 | 3,0 |
1146,56 | 0 | 858,86 | 2,68 | 0,0110 | 0 |
1472,72 | 0 | 1185,02 | 3,69 | 0,0004 | 0 |
1798,9 | 1 | 1511,2 | 4,71 | - | 0 |
Итого | 30 | 24 |
Рисунок 3 – Эмпирическая и теоретическая функции распределения по чистым активам
Рисунок 4 – Эмпирическая и теоретическая функции распределения по прибыли
ж) Проверим гипотезу о том, что изучаемые признаки подчиняются нормальному закону распределения с помощью математического критерия Романовского:
r =(c2расч - (h-l‑1))/Ö2 – (h-l‑1)
c2расч = S(f – f |)2 / f
где: f – эмпирические частоты;
f | – теоретические частоты.
h – число групп;
l – число независимых параметров, которые необходимо знать, чтобы построить кривую теоретического распределения.
Таблица 16 – Проверка гипотезы по размеру чистых активов
Группы банков по чистым активам | Число банков, f | f | | (f- f |) | (f- f |)2 | (f- f |)2/f |
425–4568,5 | 20 | 8,0 | 12,0 | 1440 | 7,2 |
4568,5–8712 | 5 | 9,0 | -4,0 | 16,0 | 3,2 |
8712–12855,5 | 2 | 6,0 | -4,0 | 16,0 | 8,0 |
12855,5–16999 | 0 | 2,0 | -2,0 | 4,0 | 0,0 |
16999–21142,5 | 2 | 0 | 2,0 | 4,0 | 2,0 |
21142,5–25286 | 1 | 0 | 1,0 | 1,0 | 1,0 |
Итого | 30 | 25 | 22,4 |
c2расч = 22,4
r = (22,4 – (6–2–1))/Ö(2*(6–2–1))= 7,9>3, следовательно, что гипотеза о соответствии распределения банков по размеру чистых активов закону нормального распределения отвергается
Таблица 17 – Проверка гипотезы по размеру прибыли
Группы банков по прибыли | Число банков, f | f | | (f- f |) | (f- f |)2 | (f- f |)2/f |
5–331,16 | 24 | 11,0 | 13,0 | 169,0 | 7,0 |
331,16–657,32 | 4 | 10,0 | -6,0 | 36,0 | 9,0 |
657,32–983,48 | 1 | 3,0 | -2,0 | 4,0 | 4,0 |
983,48–1309,64 | 0 | 0 | 0 | 0 | 0 |
1309,64–1635,8 | 0 | 0 | 0 | 0 | 0 |
1635,8–1962 | 1 | 0 | 1,0 | 1,0 | 1,0 |
Итого | 30 | 24 | 21 |
c2расч = 21