Смекни!
smekni.com

Линейные автоматические системы регулирования (стр. 15 из 17)


Рисунок 25 – График переходного процесса в замкнутой системе с И – регулятором по возмущению

8.2.3 Система с ПИ – регулятором

Запишем передаточную функцию данной системы:

.

По аналогии с п.5 преобразуем полученную передаточную функцию в ДУ шестого порядка и приведем его к нормальной системе. После этого зададим нормальную систему в виде вектора.

Запишем нормальную систему и решим её:


Полученные результаты отобразим на рисунке 26.

Рисунок 26 – График переходного процесса в замкнутой системе с ПИ – регулятором по возмущению

8.3 Построение переходных процессов в замкнутых системах по управлению

8.3.1 Система с П – регулятором

Запишем передаточную функцию данной системы:

По аналогии с п.5 преобразуем полученную передаточную функцию в ДУ пятого порядка и приведем его к нормальной системе. После этого зададим нормальную систему в виде вектора.

Запишем нормальную систему и решим её:

Полученные результаты отобразим на рисунке 27.


Рисунок 27 – График переходного процесса в замкнутой системе с П – регулятором по управлению

8.3.2 Система с И – регулятором

Запишем передаточную функцию данной системы:

По аналогии с п.5 преобразуем полученную передаточную функцию в ДУ шестого порядка и приведем его к нормальной системе. После этого зададим нормальную систему в виде вектора.

Запишем нормальную систему и решим её:


Полученные результаты отобразим на рисунке 28.

Рисунок 28 – График переходного процесса в замкнутой системе с И – регулятором по управлению

8.3.3 Система с ПИ – регулятором

Запишем передаточную функцию данной системы:


По аналогии с п.5 преобразуем полученную передаточную функцию в ДУ шестого порядка и приведем его к нормальной системе. После этого зададим нормальную систему в виде вектора.

Запишем нормальную систему и решим её:

Полученные результаты отобразим на рисунке 29.

Рисунок 29 – График переходного процесса в замкнутой системе с ПИ – регулятором по управлению


9 ОЦЕНКА КАЧЕСТВА РАБОТЫ САУ

9.1 Постановка задачи. Критерии качества переходных процессов

Любая система автоматического регулирования, для того чтобы удовлетворять своему назначению, прежде всего, должна быть устойчивой. Однако устойчивость является необходимым, но недостаточным условием технической пригодности системы регулирования. Помимо устойчивости, к переходному процессу предъявляются требования, обуславливающие его так называемые показатели.

Качество функционирования АСР оценивается прямыми показателями оценки качества переходных процессов в замкнутой АСР. К ним относятся:

Соответственно основными критериями качества системы управления являются:

1) Устойчивость системы;

2) Максимальная динамическая ошибка

3) Статическая ошибка;

4) Время регулирования ;

5) Величина перерегулирования;

6) Степень затухания переходного процесса;

7) Степень колебательности.

Как всякая динамическая система, САУ может находиться в одном из двух режимов – стационарном (установившемся) и переходном. Стационарный режим может быть двух типов: статический и динамический. В статическом режиме, при котором все внешние воздействия и параметры системы не меняются, качество управления характеризуется точностью.

Исчерпывающее представление о качестве переходного процесса дает, естественно, сама кривая процесса. Однако при разработке САУ необходимо иметь возможность судить об основных показателях качества переходного процесса без построения их кривых, по каким-либо косвенным признакам, которые определяются более просто и, кроме того, позволяют связать показатели качества непосредственно со значениями параметров САУ. Такие косвенные признаки называются критериями качества переходного процесса.

Существуют три группы критериев качества: корневые, интегральные и частотные.

Группа корневых критериев основана на оценке качества переходного процесса по значениям полюсов и нулей передаточной функции САУ. В частном случае, когда нулей нет, качество переходного процесса определяется только полюсами.

Переходный процесс в устойчивой системе распадается на затухающие и колебательные составляющие. Если найти длительность самой длительной составляющей и величину колебательности самой колебательной составляющей, то по ним можно оценить верхние пределы величин длительности и колебательности всего переходного процесса.

Интегральными критериями качества называются такие, которые одним числом оценивают и величины отклонений, и время затухания переходного процесса. Такие критерии качества используются для определения оптимальных значений варьируемых параметров по минимуму значения соответствующей интегральной оценки. Применяются интегральные критерии обычно в теории оптимальных систем.

Наибольшее распространение получили частотные критерии, в основу которых положено использование частотных характеристик.

Рассмотрим некоторые критерии качества работы САУ:

1) Статическая ошибка (имеет место только в П – регуляторе) – это отклонение регулируемого параметра от заданного в установившемся режиме (точность системы);

.

Если в числителе передаточной функции системы нет свободного члена, то статическая ошибка равна нулю;

2) Динамическая ошибка

- это максимальное рассогласование между заданной и текущей траекторией в переходном режиме;

3) Время регулирования

– это время, в течение которого переходный процесс войдет в зону допустимой погрешности регулирования
, где
определяется следующим образом:

.

4)Величина перерегулирования

- определяется как отношение амплитуды второй полуволны к первой