Критерий устойчивости Найквиста
Данный критерий формулируется следующим образом: если разомкнутая система устойчива, то для устойчивости системы в замкнутом состоянии необходимо и достаточно, чтобы амплитудно-фазовая характеристика разомкнутой системы не охватывала точку на действительной оси с координатами

. Расстояние от этой точки до точки пересечения годографа с действительной осью называется запасом устойчивости.
Необходимо отметить, что при исследованиях на устойчивость по критериям Михайлова и Найквиста рассчитываются и строятся графики АФХ характеристического уравнения (критерий Михайлова) или разомкнутой АСР (критерий Найквиста), что является трудоемкой задачей. Поэтому для построения АФХ используется ЭВМ.
7.3.1 Замкнутая система с П – регулятором
Для замкнутой системы с П – регулятором составим таблицу 21, подставив в соответствующие ячейки коэффициенты при

из знаменателя передаточной характеристики системы:

Используя правила из таблицы 20, составим таблицу 21
Таблица 21 – Критерий Рауса для системы с П – регулятором
Из таблицы 21 видно, что замкнутая система с П – регулятором устойчива, так как выполняется необходимое условие устойчивости по критерию Рауса.
7.3.2 Замкнутая система с И – регулятором
Аналогично правилам таблицы 20 составим таблицу 22 для замкнутой системы с И – регулятором, характеристическое уравнение которого имеет вид:

Таблица 22 – Критерий Рауса для системы с И – регулятором
Из таблицы 22 видно, что замкнутая система с И – регулятором устойчива, так как выполняется необходимое условие устойчивости по критерию Рауса.
7.3.3 Замкнутая система с ПИ – регулятором
Аналогично правилам таблицы 20 составим таблицу 23 для замкнутой системы с ПИ – регулятором, характеристическое уравнение которого имеет вид:

Таблица 23 – Критерий Рауса для системы с ПИ – регулятором
Из таблицы 23 видно, что замкнутая система с ПИ – регулятором устойчива, так как выполняется необходимое условие устойчивости по критерию Рауса.
7.4 Проверка устойчивости систем по частотному критерию Найквиста
7.4.1 Разомкнутая система с П – регулятором
Для исследования системы по критерию Найквиста образуем передаточную функцию, построим годограф АФХ разомкнутой системы и исследуем ее поведение в окрестности точки с координатами

.
Передаточная функция данной системы образуется следующим образом:

Рисунок 15 – Годограф Найквиста П – регулятора
Из рисунка 15, видно, что годограф не охватывает точку с координатами

, следовательно, разомкнутая система с П – регулятором является устойчивой, так как выполняется необходимое и достаточное условие устойчивости по критерию Найквиста.
Передаточная функция данной системы образуется следующим образом:

Рисунок 16 – Годограф Найквиста И – регулятора
Из рисунка 16, видно, что годограф не охватывает точку с координатами

, следовательно, разомкнутая система с И – регулятором является неустойчивой, так как выполняется необходимое и достаточное условие устойчивости по критерию Найквиста.

Рисунок 17 – Годограф Найквиста ПИ – регулятора
Из рисунка 17, видно, что годограф не охватывает точку с координатами

, следовательно, разомкнутая система с ПИ – регулятором является устойчивой, так как выполняется необходимое и достаточное условие устойчивости по критерию Найквиста.
Для определения устойчивости системы необходимо вычислить корни полинома знаменателя (характеристического уравнения). Для этого выделим полином знаменателя, воспользовавшись системой аналитических преобразований и образуем вектор коэффициентов этого полинома A3. Для нахождения воспользуемся функцией polyroots(X).