Модель имеет 3 эндогенные (y1, y2, y3) и 4 экзогенные (x1, x2, x3, x4) переменные. Проверим каждое уравнение на необходимое и достаточное условие идентификации.
1 уравнение: y1= b12y2+b13y3+a12x2+a13x3;
Необходимое условие: D + 1 = H
Эндогенные переменные: y1, y2, y3; H=3
Отсутствующие экзогенные переменные: х1, х4; D=2
2+1=3 - условие необходимости выполнено.
Достаточное условие: В уравнении отсутствуют х1, х4. Построим матрицу из коэффициентов для второго и третьего уравнения:
Таблица 2
Уравнение | переменные | |
х1 | х4 | |
2 | a21 | a24 |
3 | a31 | 0 |
Найдем определитель:
, ранг =2, следовательно, условие достаточности выполнено.1-ое уравнение идентифицируемо.
2 уравнение: y2= b23 y3+a21x1+a22x2+a24x4 ;
Необходимое условие: D + 1 = H
Эндогенные переменные: y2, y3; H=2
Отсутствующие экзогенные переменные: х3; D=1
1+1=2 - условие необходимости выполнено.
Достаточное условие: В уравнении отсутствуют y1, х3. Построим матрицу из коэффициентов для первого и третьего уравнения:
Таблица 3
Уравнение | переменные | |
y1 | х3 | |
1 | -1 | a13 |
3 | 0 | a33 |
Найдем определитель:
, ранг =2, следовательно, условие достаточности выполнено.2-ое уравнение идентифицируемо.
3 уравнение: y3= b32y2+a31x1+a32x2+a33x3;
Необходимое условие: D + 1 = H
Эндогенные переменные: y2, y3; H=2
Отсутствующие экзогенные переменные: х4; D=1
1+1=2 - условие необходимости выполнено.
Достаточное условие: В уравнении отсутствуют y1, х4. Построим матрицу из коэффициентов для первого и второго уравнения:
Таблица 4
Уравнение | переменные | |
х1 | х4 | |
1 | -1 | 0 |
2 | 0 | a24 |
Найдем определитель:
, ранг =2, следовательно, условие достаточности выполнено.3-е уравнение идентифицируемо.
В целом вся система уравнений является идентифицируемой.
Решение
2б)
,Тогда система уравнений будет иметь вид:
Модель имеет 3 эндогенные (y1, y2, y3) и 4 экзогенные (x1, x2, x3, x4) переменные. Проверим каждое уравнение на необходимое и достаточное условие идентификации.
1 уравнение: y1= b13y3+a11x1+a13x3+a14x4;
Необходимое условие: D + 1 = H
Эндогенные переменные: y1, y3; H=2
Отсутствующие экзогенные переменные: х2; D=1
1+1=2 - условие необходимости выполнено.
Достаточное условие: В уравнении отсутствуют y2, х2. Построим матрицу из коэффициентов для второго и третьего уравнения:
Таблица 5
Уравнение | переменные | |
y2 | х2 | |
2 | -1 | a22 |
3 | 0 | 0 |
Найдем определитель:
, следовательно, условие достаточности НЕ выполнено.1-ое уравнение НЕидентифицируемо.
2 уравнение: y2= b11 y1+b23y3+a22x2+a24x4 ;
Необходимое условие: D + 1 = H
Эндогенные переменные: y1, y2, y3; H=3
Отсутствующие экзогенные переменные: x1, х3; D=2
2+1=3 - условие необходимости выполнено.
Достаточное условие: В уравнении отсутствуют x1, х3. Построим матрицу из коэффициентов для первого и третьего уравнения:
Таблица 6
Уравнение | переменные | |
x1 | х3 | |
1 | a11 | a13 |
3 | a31 | a33 |
Найдем определитель:
, ранг =2, следовательно, условие достаточности выполнено.2-ое уравнение идентифицируемо.
3 уравнение: y3= b31y2+a31x1+a33x3+a34x4;
Необходимое условие: D + 1 = H
Эндогенные переменные: y1, y3; H=2
Отсутствующие экзогенные переменные: х2; D=1
1+1=2 - условие необходимости выполнено.
Достаточное условие: В уравнении отсутствуют y1, х4. Построим матрицу из коэффициентов для первого и второго уравнения:
Таблица 7
Уравнение | переменные | |
y2 | х2 | |
1 | 0 | 0 |
2 | -1 | a22 |
Найдем определитель:
, следовательно, условие достаточности НЕ выполнено3-е уравнение НЕидентифицируемо.
В целом вся система уравнений является НЕидентифицируемой, так как первое и третье уравнение – НЕидентифицируемы.
2в) По данным, используя косвенный метод наименьших квадратов, построить структурную форму модели вида: y1=a01+b12y2+a11x1+ε1;
y2=a02+b21y1+a22x2+ε2
Таблица 8
Вариант | n | y1 | y2 | x1 | x2 |
8 | 1 | 51.3 | 39.4 | 3 | 10 |
2 | 112.4 | 77.9 | 10 | 13 | |
3 | 67.5 | 45.2 | 5 | 3 | |
4 | 51.4 | 37.7 | 3 | 7 | |
5 | 99.3 | 66.1 | 9 | 6 | |
6 | 57.1 | 39.6 | 4 | 1 |
Решение
1) Структурную форму модели (СФМ) преобразуем в приведенную форму модели (ПФМ):
Для этого из второго уравнения выражаем y2 и подставляем его в первое, а из первого выражаем y1 и подставляем его во второе уравнение. Получим:
y1=δ11x1+ δ12x2+u1;
y2=δ21x1+ δ22x2+u2,
где u1 и u1 –случайные ошибки ПФМ.
Здесь
2) В каждом уравнение ПФМ с помощью МНК определим δ – коэффициент.
Для первого уравнения:
.Для решения системы уравнений требуются вспомогательные расчеты, которые представлены в таблице 9, 10.
Таблица 9
n | y1 | y2 | x1 | x2 |
1 | 51,3 | 39,4 | 3 | 10 |
2 | 112,4 | 77,9 | 10 | 13 |
3 | 67,5 | 45,2 | 5 | 3 |
4 | 51,4 | 37,7 | 3 | 7 |
5 | 99,3 | 66,1 | 9 | 6 |
6 | 57,1 | 39,6 | 4 | 1 |
Сумма | 439 | 305,9 | 34 | 40 |
Сред. знач. | 73,17 | 50,98 | 5,67 | 6,67 |