Смекни!
smekni.com

Економічне прогнозування (стр. 1 из 15)

1 Методологічні основи соціально-економічного прогнозування

Прогнозом називають науково обґрунтований висновок про майбутні події і перспективи розвитку процесів, про можливі наслідки управлінських рішень.

За специфікою об'єктів прогнози поділяють на науково-технічні, економічні, соціальні, військово-політичні тощо. Економічні прогнози класифікують за масштабністю об'єкта на глобальні, макроекономічні, структурні (міжгалузеві та міжрегіональні), регіональні, галузеві, мікроекономічні.

B світовій практиці прикладного прогнозування використовують різні методи: статистичні (прогнозна екстраполяція), функціонально-ієрархічні (прогнозні сценарії), методи структурної аналогії, імітаційного моделювання, експертні оцінки.

При прогнозуванні соціально-економічних процесів перевага віддається статистичним методам, прогнозним результатом яких є очікувані у майбутньому значення характеристик процесу, тобто статистичний прогноз завжди є умовним.

Іншою особливістю статистичного прогнозу є визначеність його в часі. Часовий горизонт прогнозу називають періодом упередження. За тривалістю цього періоду вирізняють прогнози: короткострокові (до 1 року), середньострокові (до 5 років) і довгострокові (від 5 до 20 років і більше). Тривалість періоду упередження залежить від специфіки об'єкта прогнозування, інтенсивності динаміки, тривалості дії виявлених закономірностей та тенденцій.

Прогнозний результат на період упередження можна представити одним числом (точковий прогноз) або інтервалом значень, до якого з певною ймовірністю належить прогнозна величина (інтервальний прогноз).

Статистичні прогнози ґрунтуються на гіпотезах про стабільність значень величини, що прогнозується; закону її розподілу; взаємозв'язків з іншими величинами тощо. Основний інструмент прогнозування — екстраполяція.

Суть прогнозної екстраполяції полягає в поширенні закономірностей, зв'язків і відношень, виявлених в t-му періоді, за його межі.

Залежно від гіпотез щодо механізму формування і подальшого розвитку процесу використовуються різні методи прогнозної екстраполяції. Їх можна об'єднати в дві групи:

- екстраполяція закономірностей динаміки — тренду і коливань;

- екстраполяція причинно-наслідкового механізму формування процесу — факторне прогнозування.

Ці методи різняться не процедурою розрахунків прогнозу, а способом описування об'єкта моделювання. Екстраполяція закономірностей розвитку ґрунтується на вивченні його передісторії, виявленні загальних і усталених тенденцій, траєкторій зміни в часі. Абстрагуючись від причин формування процесу, закономірності його розвитку розглядають як функцію часу. Інформаційною базою прогнозування слугують одномірні динамічні ряди.

При багатофакторному прогнозуванні процес розглядається як функція певної множини факторів, вплив яких аналізується одночасно або з деяким запізненням. Інформаційною базою виступає система взаємозв'язаних динамічних рядів. Оскільки фактори включаються в модель у явному вигляді, то особливого значення набуває апріорний, теоретичний аналіз структури взаємозв'язків.

Важливим етапом статистичного прогнозування є верифікація прогнозів, тобто оцінювання їх точності та обґрунтованості. Ha етапі верифікації використовують сукупність критеріїв, способів і процедур, які дають можливість оцінити якість прогнозу.

Найбільш поширене ретроспективне оцінювання прогнозу, тобто оцінювання прогнозу для минулого часу (ex-post прогноз). Процедура перевірки така. Динамічний ряд поділяється на дві частини: перша — для t= 1,2,3, ...,p — називається ретроспекцією (передісторією), друга — для t=p + 1, p + 2, p + 3, ..., p +(n —р) — прогнозним періодом.

За даними ретроспекції моделюється закономірність динаміки і на основі моделі розраховується прогноз Yp+v, де v — період упередження. Ретроспекція послідовно змінюється, відповідно змінюється прогнозний період, що унаочнює рис. 1.1 (для v = 1).

Оскільки фактичні значення прогнозного періоду відомі, то можна визначити похибку прогнозу як різницю фактичного уt і прогнозного Ytрівнів: et = yt – Yt. Всього буде n —р похибок. Узагальнюючою оцінкою точності прогнозу слугує середня похибка:

абсолютна

, квадратична
.

Для порівняння точності прогнозів, визначених за різними моделями, використовують похибку апроксимації (%):

Якщо результат оцінювання точності прогнозу задовольняє визначені критерії точності, скажімо, 10%, то прогнозна модель вважається прийнятною і рекомендується для практичного використання. Очевидно, що похибка прогнозу залежить від довжини ретроспекції та горизонту прогнозування. Оптимальним співвідношенням між ними вважається 3 : 1.

При оцінюванні та порівнянні точності прогнозів використовують також коефіцієнт розбіжності Г. Тейла, який дорівнює нулю за відсутності похибок прогнозу і не має верхньої межі:

Існуючі методи верифікації прогнозів у більшості своїй ґрунтуються на статистичних процедурах, які зводяться до побудови довірчих меж прогнозу, себто до побудови інтервальних прогнозів.

2 Методи і моделі прогнозування одновимірних процесів

Ряди динаміки характеризують процеси розвитку соціально-економічних явищ. Цим процесам властиві дві взаємопов'язані риси: динамічність та інерційність, що формують закономірність розвитку.

Ряди, в яких рівні коливаються навколо постійної середньої, називаються стаціонарними. Економічні ряди, як правило, нестаціонарні. Для більшості з них характерна систематична зміна рівнів з нерегулярними коливаннями, коли піки і западини чергуються з різною інтенсивністю. Скажімо, економічні цикли (промислові, будівельні, фондового ринку тощо) повторюються з різною тривалістю і різною амплітудою коливань.

Короткострокове прогнозування на основі ковзних середніх

Досить поширеним і простим методом аналізу динаміки є згладжування ряду. Суть його полягає в заміні фактичних рівнів уt , середніми за певними інтервалами. Варіація середніх порівняно з варіацією рівнів первинного ряду значно менша, а тому характер динаміки проявляється чіткіше. Процедуру згладжування називають фільтруванням, а оператори, за допомогою яких вона здійснюється, — фільтрами. На практиці використовують переважно лінійні фільтри, з-поміж яких найпростіший — ковзна середня з інтервалом згладжування m < n. Інтервали поступово зміщуються на один елемент:

Для кожного з них визначається середня

, яка припадає на середину інтервалу. Якщо m — непарне число, тобто m = 2p + 1, а ваги членів ряду в межах інтервалу однакові

, то

де yiфактичне значення рівня в i-й момент; i — порядковий номер рівня в інтервалі.

При парному m середина інтервалу знаходиться між двома часовими точками і тоді проводиться додаткова процедура центрування (усереднення кожної пари значень).

Ковзна середня з однаковими вагами аrпри згладжуванні динамічного ряду погашає не лише випадкові, а й властиві конкретному процесу періодичні коливання. Припускаючи наявність таких коливань, використовують зважену ковзну середню, тобто кожному рівню в межах інтервалу згладжування надають певну вагу. Способи формування вагової функції різні. B одних випадках ваги відповідають членам розкладання біному

, при m=3, скажімо, ar = 1/4, 1/2,1/4. B інших випадках до даних інтервалу згладжування добирається певний поліном, наприклад, парабола
, де i = -р, …, p. Тоді вагова функція така:

Для m = 5

Для m = 7

і т.д.

Як видно з формул, ваги симетричні відносно центра інтервалу згладжування, сума їх з урахуванням винесеного за дужки множника дорівнює

.

Основна перевага ковзної середньої — наочність і простота тлумачення тенденції. Проте не слід забувати, що ряд ковзних середніх коротший за первинний ряд на 2p рівнів, а отже, втрачається інформація про крайні члени ряду. I чим ширший інтервал згладжування, тим відчутніші втрати, особливо нової інформації . Окрім того, маючи спільну основу розрахунку, ковзні середні виявляються залежними, що при згладжуванні значних коливань навіть за відсутності циклів у первинному ряду може вказувати на циклічність процесу (ефект Слуцького).

У симетричних фільтрах стара і нова інформація рівновагомі, а при прогнозуванні важливішою є нова інформація. У такому разі використовують асиметричні фільтри. Найпростіший з них — ковзна середня, яка замінює не центральний, а останній член ряду (адаптивна середня):

.