Смекни!
smekni.com

Економічне прогнозування (стр. 9 из 15)

В індексно-матричній моделі ранжування показників і ступінь їх деталізації цілковито залежить від економічної стратегії та мети дослідження.

Особливості моделювання взаємозв'язаних динамічних рядів

Якщо інформаційна база регресійної моделі представлена рядами динаміки, то виникають певні методологічні труднощі, спричинені залежністю рівнів, їх автокореляцією. Наявність останньої порушує одну з передумов регресійного аналізу —. незалежність спостережень — і призводить до викривлення його результатів.

У практиці регресійного аналізу застосовують різні способи усунення автокореляції. Найпростішим є спосіб різницевих перетворень, коли замість первинних рівнів взаємозв'язаних рядів динаміки

,
використовують абсолютні прирости (різниці). Так, різниці першого порядку
та
усувають лінійний тренд, однофакторна регресія набуває такого вигляду:

,

де b інтерпретується як звичайний коефіцієнт регресії; a — вільний член рівняння.

Якщо тенденція нелінійна, доцільно застосувати спосіб відхилень від тенденції, коли первинні рівні

,
замінюються відхиленнями від тренда

.

Усуненню автокореляції сприяє також уведення фактора часу t у рівняння регресії

. Навантаження на змінну t залежить від комплексу включених у модель факторів. Зміст параметрів такої моделі розглянемо на прикладі взаємозв'язку динаміки імпорту нафти
і цін за барель нафти
на світовому ринку. За даними табл. 3.3, обсяги імпорту нафти в країну систематично зменшувалися, що зумовлено як зміною цін, так і внутрішніми факторами. Зв'язок між цими показниками можна подати лінійною функцією

,

де b — середній приріст результативної ознаки у на одиницю приросту факторної ознаки х; с — середній щорічний приріст у під впливом зміни неідентифікованих факторів, які рівномірно змінюються в часі.

Таблиця 3.3

Порядковий номер року

Iм порт нафти,

,млн. барелів

Ціна за 1 барель,

, дол.

1

1749

13,48

1808

-59

2

1702

14,76

1743

-41

3

1769

18,92

1653

116

4

1600

22,97

1562

38

5

1431

30,29

1442

-11

6

1325

34,66

1349

-24

7

1302

30,77

1332

-30

8

1341

29,36

1292

49

9

1232

28,07

1251

-19

10

1180

26,40

1213

-33

11

1162

27,79

1147

15

Разом

15793

х

15793

0

Модель імпорту нафти описується рівнянням:

Y= 1984,340-2,497

, -52,986t

(27,97) (-2,50) (-6,99).

Наведені в дужках значення t-критерію перевищують критичне

(8) = 2,31, що дає підстави з імовірністю 0,95 вважати вплив кожного фактора на обсяги імпорту істотним. Згідно із значеннями коефіцієнтів регресії підвищення ціни одного бареля нафти на 1 долар зменшує імпорт нафти в країну в середньому на 2,5 млн. барелів. За рахунок інших факторів, передусім політики енергозбереження, імпорт нафти щорічно зменшується в середньому на 53 млн. барелів.

Значення коефіцієнта детермінації

= 0,951 та дисперсійного критерію F(2,8) = 77,48 свідчать про адекватність моделі.

Отже, за наявності лінійної тенденції в рядах у модель вводиться змінна часу

де

— чистий ефект впливу i-го фактора на у; с — ефект неідентифікованих факторів, які формують тенденцію ряду.

У динамічній моделі можна відобразити не лише тенденцію, а й більш складні компоненти ряду, скажімо, періодичні чи сезонні коливання, перервність процесу тощо.

Особливістю регресійного аналізу динамічних рядів є оцінка автокореляції залишкових величин

. Якщо автокореляція істотна, значить включені в модель фактори не повністю розшифровують механізм формування процесу, модель визнається неадекватною. Перевірку істотності автокореляції можна здійснити на основі циклічного коефіцієнта першого порядку
.

У програмних засобах для перевірки істотності автокореляції частіше використовують критерій Дарбіна-Ватсона, характеристика якого D функціонально зв'язана з

:

,

За відсутності автокореляції між суміжними членами ряду значення D становить приблизно 2, при високій додатній автокореляції D наближається до 0, при високій від'ємній автокореляції— до 4. Визначені критичні межі його значень: нижня

і верхня
, на основі яких приймається або відхиляється гіпотеза про відсутність автокореляції:
:
= 0.

При перевірці гіпотези можливі три висновки:

- D >

— автокореляція відсутня;

- D <

— гіпотеза про відсутність автокореляції відхиляється;

-

D
— висновок залишається невизначеним.