Смекни!
smekni.com

Економічне прогнозування (стр. 4 из 15)

,

де Yt+v— прогнозне значення на період упередження v;

— база екстраполяції, найчастіше це останній, визначений за трендом рівень ряду.

Екстраполяція тренда дає точковий прогноз. Очевидно, що «влучення в точку» малоймовірне. Адже тренду властива невизначеність, передусім через похибки параметрів. Джерелом цих похибок є обмежена сукупність спостережень yt, кожне з яких містить випадкову компоненту et,. Зсунення періоду спостереження лише на один крок веде до зсунення оцінок параметрів. Випадкова компонента буде присутня і за межами динамічного ряду, а отже, її необхідно врахувати. Для цього визначають довірчий інтервал, який би з певною ймовірністю окреслив межі можливих значень Yt+vТочковий інтервал перетворюється в інтервальний. Ширина інтервалу залежить від варіації рівнів динамічного ряду навколо тренда та ймовірності висновку (1 - а):

Де Sp— середня квадратична похибка прогнозу, значення якої залежить від дисперсії тренда

та дисперсії відхилень від тренда
.
Зокрема, для лінійного тренда


.

Якщо база прогнозування — останній рівень ряду, то

, a
замінюється на
. Після нескладних алгебраїчних перетворень похибку прогнозу за лінійним трендом можна представити так:

або, позначивши підкореневий вираз символом z, sp= sez.

Тобто похибка прогнозу залежить від залишкової дисперсії

, довжини динамічного ряду (передісторії) n та періоду упередження v. Чим довший період передісторії, тим похибка менша, а збільшення періоду упередження, навпаки, веде до зростання похибки прогнозу.

Прогнозування повних циклів

Свої особливості має моделювання динамічних процесів з ефектом насичення, коли темпи зростання (зниження) уповільнюються і рівень наближується до певної межі (питомі витрати ресурсів, споживання продуктів харчування на душу населення тощо). Для їх описування використовують клас кривих, що мають горизонтальну асимптоту

. Найпростішою з-поміж них є модифікована експонента:

де параметр а — різниця між ординатою Yt, при t = 0 та асимптотою K. Якщо a < 0, асимптота знаходиться вище кривої, якщо a > 0 — асимптота нижче кривої. Параметр b характеризує співвідношення послідовних приростів ординати. За умови рівномірного розподілу ординати по осі часу ці співвідношення є сталими:

.

Модифікована експонента описує процеси, на які діє певний обмежувальний фактор, і вплив цього фактора зростає зі зростанням Yt. У разі, коли обмежувальний фактор впливає лише після певного моменту, до якого процес розвивався за експоненційним законом, то такий процес найкраще апроксимується S-подібною функцією з точкою перегину P, в якій прискорене зростання змінюється уповільненням. Наприклад, попит на новий товар попервах незначний; потім, після визнання споживачами, він стрімко зростає, але у міру насичення ринку темпи зростання уповільнюються, згасають. Попит стабілізується на певному рівні. Аналогічні фази розвитку мають процеси нововведень і винаходів, ефективність використання ресурсів тощо. З-поміж S-подібних кривих, що описують повний цикл розвитку, найпоширенішою є функція Перла-Ріда — логістична крива:

.

Якщо показник процесу — частка, що змінюється в межах від 0 до 1, то формула логістичної функції спрощується:

.

У страховій і демографічній статистиці використовують іншу S-подібну функцію — криву Гомперца:

або в логарифмах

.

Тобто крива Гомперца приводиться до модифікованої експоненти, у якої сталими є відношення приростів ординат у логарифмах.

Оцінювання параметрів функцій, які мають асимптоти, порівняно з поліномами та експонентами значно складніше. Тут можливі два варіанти.

За першим варіантом асимптота у вигляді нормативу, стандарту тощо визначається апріорі —

. Тоді модифіковану експоненту можна представити так:

.

Замінивши

на z і прологарифмувавши рівняння, дістанемо лінійну функцію логарифмів lgz = lga + tlgb. Аналогічно приводиться до лінійного виду логістична функція
, яка при заміні
на z у логарифмах набуває такого ж вигляду: lgz = lga + tlgb. Параметри приведених до лінійного виду функцій, як і параметри поліномів, можна оцінити методом найменших квадратів.

Отже, клас моделей динаміки досить широкий, і вони описують різні процеси розвитку. Вибір типу моделі у конкретному дослідженні ґрунтується передусім на теоретичному аналізі специфіки процесу, його внутрішньої структури, взаємозв'язків з іншими процесами. Ha основі такого аналізу в загальних рисах визначається характер динаміки (рівномірний, рівноприскорений, з насиченням тощо) та окреслюється коло функцій, здатних апроксимувати цей процес. Серйозною підмогою при виборі конкретної моделі слугують формальні методи. Скажімо, для поліномів — це аналіз послідовних різниць. Рівність різниць р-го порядку розглядається як симптом того, що процес описується поліномом р-го порядку. Якщо приблизно однакові різниці 1-го порядку

, використовують лінійний тренд, якщо однакові різниці 2-го порядку —
— параболу і т. д. Певні складнощі можуть виникнути при виборі експоненти. Адже S-подібна крива до точки перегину описує експоненційний тренд, а сама точка перегину може бути за межами динамічного ряду. Отже, якщо межа насичення теоретично можлива і процес у майбутньому може згасати або існують певні обмеження для процесу (правові, матеріальних ресурсів, виробничих потужностей тощо), то перевага віддається S-подібній кривій.

Оскільки первинним рядам динаміки властива значна варіація рівнів ytто аналіз послідовних різниць більш коректно проводити на основі рядів ковзних середніх. У табл.2.2 наведено основні характеристики такого аналізу (апріорні тести), за якими визначається конкретний тип моделі повного циклу.

Таблица 2.2

Характеристика

Властивості характеристик

Тип трендової моделі

Приблизно однакові

Поліном 1-го ступеня

Лінійно змінюються

Поліном 2-го ступеня

Приблизно однакові

Експонента

Лінійно змінюються

Модифікована експонента

Лінійно змінюються

Логістична крива

Лінійно змінюються

Крива Гомперца

При зворотному напрямку тенденції різниці розраховуються, починаючи з кінця. За наявності від'ємних різниць логарифмування неможливе, тому необхідно збільшити інтервал згладжування ковзних середніх.

Типи моделей взаємозв'язку

Усі явища навколишнього світу взаємопов'язані й взаємозумовлені. У складному переплетенні всеохоплюючого взаємозв'язку будь-яке з них є наслідком дії певної множини причин і водночас причиною інших явищ.