2 Анализ лесоводственной информации
При проведённых исследованиях нами была взята выборка в количестве 50 деревьев, у которых замерены и определены следующие показатели: диаметр дерева на высоте 1,3 метра; диаметр кроны и площадь роста. Исходные данные были подвергнуты статистическому анализу. В результате можно сделать следующие выводы.
Среднее значение выборочной совокупности по диаметру – 17,4, см; по диаметру кроны – 3,5, м и площади роста – 16,51 м2. Среднее значение деревьев в лесном массиве (генеральная совокупность) по диаметру – 17,4 ± 2,74 см; по диаметру кроны – 3,5 ± 0,34 м; по площади роста – 16,51 ± 6,68 м2. Об этом можно утверждать с достоверной вероятностью в 0,954.
Размах варьирования вариант в выборке и в генеральной совокупности имеют одинаковые значения:
по диаметру ствола – 45,0 см;
по диаметру кроны – 6,4 м;
по площади роста – 106,7 м2.
Каждое значение дерева по диаметру отклоняется от среднего на величину – 9,7, см; по диаметру кроны отклоняется от среднего на величину – 1,2 м; по площади роста отклоняется от центра на величину – 23,6 м2. Для всех деревьев в лесном массиве:
по диаметру ствола – 9,7 ± 1,94 см;
по диаметру кроны – 1,2 ± 0,24 м;
по площади роста – 23,6 ± 4,72 м2.
Об этом можно утверждать в вероятностью 0,954. При этом изменчивость деревьев в выборке составляет по диаметру ствола – 55,6, %; по диаметру кроны – 33,9, %; по площади роста – 143,2, %. Для всех деревьев вариация составляет – по диаметру ствола – 55,6 ± 1,76 %; по диаметру кроны – 33,9 ± 0,66 % и по площади роста – 143,2 ± 11,62 %. Об этом можно утверждать с вероятностью 0,954.
Согласно шкале М.Л. Дворецкого [ ] изменчивость по диаметру ствола очень большая, диаметру кроны большая и по площади роста очень большая.
Расхождение между средним значением выборочной совокупности и средним значением всех деревьев составляет: для диаметра ствола – 7,87, %; диаметра кроны – 4,79, % и площади роста – 20,26, %. При этом для всех деревьев в лесном массиве:
диаметр ствола – 7,87 ± 1,76 %;
диаметр кроны – 4,79 ± 0,66 %;
площадь роста – 20,26 ± 11,62 %.
Исходя из полученных результатов, можно рассчитать необходимое количество наблюдений по диаметру ствола при уровне доверительной вероятности 0,683 – 50; при 0,954 – 200, а при 0,977 – 450.
О степени надёжности судим по показателю t. Так как t для найденных показателей по 3 признакам больше 3, значение рассчитанных нами показателей достоверны.
Большую часть статистических показателей можно получить с помощью пакета анализа электронной таблицы «Excel». Что и было проделано (таблица 10).
Таблица 10 – Расчёт статистических показателей по морфолого-пространственным показателям
Статистические показатели | Диаметр ствола, см | Диаметр кроны, м | Площадь роста, м2 |
Среднее | 17,4 | 3,5 | 16,5 |
Стандартная ошибка | 1,4 | 0,2 | 3,3 |
Медиана | 14,8 | 3,4 | 5,5 |
Мода | 22,1 | 2,9 | 0,1 |
Стандартное отклонение | 9,7 | 1,2 | 23,6 |
Дисперсия выборки | 93,8 | 1,4 | 559,1 |
Эксцесс | 2,6 | 2,6 | 5,9 |
Асимметричность | 1,5 | 1,1 | 2,3 |
Интервал | 45,0 | 6,4 | 106,7 |
Минимум | 6,3 | 1,0 | 0,1 |
Максимум | 51,3 | 7,4 | 106,8 |
Сумма | 870,7 | 174,1 | 825,3 |
Счет | 50,0 | 50,0 | 50,0 |
Уровень надежности (95,0%) | 2,8 | 0,3 | 6,7 |
Заключение
Внедрение современных компьютерных технологий во многом упростило обработку данных. В тоже время процесс большей частью автоматизирован (таблица 10) и происходит потеря интереса к научным изысканиям в силу непонимания сущности обработки исходных данных.
В процессе обработки и анализа представленной выше информации мы в какой то мере научились, во всяком случае имеем теперь представление о способах обработки лесоводственной информации, ознакомились с необходимыми математическими методами, которые используются в лесном хозяйстве.
А как «бонус» научились придерживаться определённых стандартов, которые имеют место при оформлении печатных работ.
А свободное общение с преподавателем (чуть ли не понибратство) и уверенность в том, что зачёт «выхватим» в лёт, позволило нам чувствовать на занятиях достаточно свободно и в тоже время «мимо» ходом что-то уловить. Считаем, что выражение «не знал, а ещё и забыл» это не про нас. Считаем, что легче «въехать» в определённую тему можно и без отличного знания теории, конечно азы кой-какие нужны, здесь этот вопрос даже не обсуждается, но легче учиться, если ты не связан какими либо ограничениями. Мы учимся в первую очередь для себя и поэтому на нашей совести усидчивость, трудолюбие, желание познания чего-либо.
В заключении хотелось бы сказать спасибо Артёму Геннадьевичу Неповинных, за добросовестный труд))))))), за то что он «крутился» возле нас в силу своей энергичности, за его взгляд на каждого студента как на перспективного молодого человека, даже на самого отпетого лентяя))))) И он прав, мы самые лучшие, целеустремлённые и готовые жить полноценной жизнью, преодолевать жизненные трудности, верить в лучшее, стремится изменить себя к лучшему и в конечном итоге и общество в целом в котором мы обитаем.
Библиографический список
1. Вайс, А.А. Математические методы в лесном хозяйстве: Лабораторный практикум для студентов специальности 260400, 260500 и 320800 очной формы обучения [Текст] / А.А. Вайс, Н.В. Павлов, А.В. Подколзин. – Красноярск: СибГТУ, 2005.-32 с.
2. Дворецкий, М.Л. Практическое пособие по вариационной статистике [Текс] / М.Л. Дворецкий. – Йошкар-Ола, 1961. – 100 с.
3. Кюн, Ю. Описательная и индуктивная статистика [Текс] / Ю. Кюн. – М.: Финансы и статистика, 1981. – 126 с.
4. Свалов, Н.Н. Вариационная статистика [Текс] / Н.Н. Свалов. – М.: Московский лесотехнический институт, 1975. – 84 с.
5. Свалов, Н.Н. Вариационная статистика: учебное пособие для вузов [Текс] / Н.Н. Свалов. – М.: Лесная промышленность, 1977. – 176 с.
6. Фалалеев, Э.Н. Математическая статистика: учебное пособие [Текс] / Э.Н. Фалалеев, А.С. Смольянов. – Красноярск: КГУ, 1981. – 128 с.
7. Хазанов, Ю.С. Статистика [Текс] / Ю.С. Хазанов. – М.: Статистика, 1974. – 192 с.